RGC Ref.: M-HKUST607/12

(please insert ref. above)

The Research Grants Council of Hong Kong SRFDP & RGC ERG Joint Research Scheme <u>Completion Report</u>

(Please attach a copy of the completion report submitted to the Ministry of Education by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Development of New Environmentally Friendly Green Catalytic Processes for Chiral Drug Discovery

	Hong Kong Team	Mainland Team
Name of Principal	Jianwei Sun	Jing Zhao
Investigator (with title)		
Post	Assistant Professor	Professor
Unit / Department /	Department of Chemistry	School of Life Sciences,
Institution	HKUST	Nanjing University
Contact Information	+852 2358 7351	+86-25-89681978
	sunjw@ust.hk	jingzhao@nju.edu.cn
Co-investigator(s)		
(with title and		
Institution)		
PhD student(s) (with	Wanxiang Zhao, from <u>1 Mar</u>	
	<u>2013</u> to <u>31 Dec 2013</u>	
	Zhaobin Wang, from <u>1 Mar</u>	
	<u>2013</u> to <u>31 Aug 2014</u>	
	Hui Qian, from <u>1 Mar 2013</u> to	
	<u>31 Aug 2015</u>	
	Yong Wang, from <u>1 Sep 201</u> 4	
	to <u>29 Feb 201</u> 6	
period of involvement)		
	Institution: Hong Kong UST	

2. Investigator(s) and Academic Department/Units Involved

Note: The Hong Kong project team must involve at least one research postgraduate student pursuing a Doctor of Philosophy degree at the UGC-funded university (PhD student) at any time throughout the project period.

3. Project Duration

S&R 8 (10/15)

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 Mar 2013		
Project Completion date	29 Feb 2016		
Duration (in month)	36		
Deadline for Submission of Completion Report	28 Feb 2017		

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To develop chiral organic acid-catalyzed rapid construction of alkaloid-type polycyclic compounds with anticancer activity.
 - 2. To expand the structural diversity of the multicomponent reaction with a matrix of diverse starting materials.
 - 3. To evaluate the biological activities of the 1,2,3,4-tetrahydroisoquinoline (THIQ) products and identify drug candidates through additional structure-activity relationship studies.
- 5.2 Revised Objectives

NA

6. Research Outcome

Through this project, we have achieved a range of new reactions catalyzed by organic catalysts. The major findings and research outcome are listed here.

(1) We have developed a novel catalytic asymmetric intermolecular process for the efficient formation of *acyclic all-carbon quaternary* stereocenters from racemic tertiary alcohols.

- (2) We have developed a new organocatalytic transfer hydrogenation strategy for the efficient asymmetric synthesis of 1,1-diarylethanes, an important family of compounds with broad medicinal and agricultural applications.
- (3) We have developed the first catalytic enantioselective desymmetrization of azetidines. Despite the low propensity of azetidine ring-opening and significant challenge in stereocontrol, the smooth intermolecular desymmetrization of a wide range of 3-substituted azetidines has been achieved with both excellent efficiency and remarkable enantioselectivity, enabled by optimal combination of catalysts, protective groups, nucleophiles, and reaction conditions.
- (4) We have developed a new general and mild catalytic asymmetric 1,6-conjugate addition process of *para*-quinone methides. The process represents not only a new member of the small family of asymmetric reactions of *p*-QMs, but also the first of such processes with general scope enabling efficient and mild formation of all-carbon quaternary stereocenters.
- (5) We have developed the first catalytic asymmetric intermolecular alcohol addition to *o*-QMs.
- (6) We have established the first Brønsted acid catalyzed enantioselective addition of thiols to the in situ generated *o*-QMs.
- (7) We have developed a new catalytic asymmetric approach for the synthesis of chiral 1,4-dioxanes, an important scaffold of broad utility but lacking general and efficient access. It is also the first demonstration of organocatalytic oxetane desymmetrization by an alcohol nucleophile.
- (8) We have developed an efficient organocatalytic enantioselective intermolecular addition of naphthols to in-situ generated *para*-quinone methides.
- (9) Asymmetric opening of oxetanes is a challenging topic. In this project, we achieved the first asymmetric chloride opening of oxetanes, providing expedient access to highly functionalized three-carbon chiral building blocks with excellent efficiency and stereocontrol.
- (10) The Piancatelli rearrangement is a large family of powerful transformations that provide rapid access to valuable cyclopentenone building blocks. However, the catalytic enantioselective example of this family has remained unknown. In this project, we have achieved the first example of this family.

Potential for further development of the research and the proposed course of action:

We have developed a range of new organocatalytic reactions in this project. Nevertheless, challenges remain to be addressed, and these are potential future efforts and directions. For example, we will need to follow up on some of the initial results we have obtained, such as more mechanistic studies and biological studies on the interesting structures. These studies will be ongoing in our laboratory.

The PI also visited the mainland team on Mar 13 and Dec 26-27, 2014 as well as May 11-12, 2015. The visits allowed scientific discussions as well as exchange on progress on the collaboration.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

We have developed a range of new organocatalytic asymmetric reactions, providing access to a diverse set of chiral molecules that are potentially biologically significant. Initial biological studies have demonstrated that some of the structures exhibit anticancer activity. These results not only contribute to the fundamental asymmetric catalysis, but may also lead to potential application in drug discovery.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.))

The	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
<u></u>	(For paper		-	belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publishing				
				asterisk*)	aetails specified)				
2014				Wanyiang	Specified)	2014	Ves	Ves	Ves
2014				7hao	lactiva	2014	105	105	105
				Zhaohin	Eormatio				
				Zhaodhi Wang	rormano				
				wang,	n o j				
				Boyang	All-Carbo				
				Chu,;	n				
				Jianwei	Quaternar				
				Sun*	V				
					Stereocent				
					ers				
					from				
					Indoles				
					and				
					Tertiary				
					Alcohols				
					Bearing A				
					Directing				
					Group,				
					Angew.				
					Chem. Int.				
					Ed. 2015,				
					54,				
					1910 - 19				
					13				

2014		Xiuqin	Catalytic	2017	Yes	Yes	Yes
		Dong,	Asymmetr				
		Jianwei	ic α -				
		Sun*	Aldol				
			Reaction				
			of				
			- Vinvlogou				
			s N-				
			Heterocyc				
			lic				
			Carbene				
			Enolates				
			Formatio				
			n of				
			n oj Ouaternar				
			y and				
			Lahile				
			Tertiary				
			Sterencent				
			ers Oro				
			Lett				
			2014 16				
			2014, 10, 2450-245				
			3				
2015		Xiugin	5 N-Heteroc	2017	Ves	Yes	Yes
2010		Dong Wen	velie	2017	105	105	105
		Vang, wen	Carhene				
		Weimin	Catalyzed				
		Hu.	Enantiose				
		Jianwei	lective				
		Sun*	a-Fluorin				
		Sun	ation of				
			Alinh				
			atic				
			Aldehvdes				
			and				
			a-Chloro				
			Aldehvdes				
			Svnthesis				
			of				
			a-Fluoro				
			Ester				
			s, Amides.				
			and				
			Thioesters				
			, Angew.				
			Chem. Int.				
			Ed. 2015.				
			54,				
			660 - 663				

2015		Zhaohin	Organoca	2017	Yes	Ves	Yes
2015		Wang	talvtic	2017	105	105	105
		Fuiin Ai	Asymmetr				
		Tujili Al, Zhana	Asymmetr				
		Zneng					
		wang,	Synthesis				
		Wanxiang	of				
		Zhao,	1,1-Diaryl				
		Guangyu	ethanes				
		Zhu,*	by				
		Zhenyang	Transfer				
		Lin,*	Hydrogen				
		Jianwei	ation				
		Sun*	J. Am.				
		Jun	Chem				
			Soc				
			2015				
			2013,				
			137,				
2015			383-389	2015	**		* *
2015		Zhaobin	Catalytic	2017	Yes	Yes	Yes
		Wang, Fu	Enantiose				
		Kit Sheong,	lective				
		Herman H.	Intermole				
		Y. Sung,	cular				
		Ian D.	Desymmet				
		Williams,	rization of				
		Zhenvang	Azetidines				
		Lin *	J Am				
		Lin, Iianwei	, o. m. Chem				
		Sun*	Soc 2015				
		Sun	127				
			137,				
			5895-589				
2015		 71	0 Cutulutia	2017	V	V	V
2015			Calalylic	2017	res	res	res
		wang, Yuk	Asymmetr				
		Fai Wong,	IC				
		Jianwei	1,6-Conju				
		Sun*	gate				
			Addition				
			of				
			para-Quin				
			one				
			Methides:				
			Formatio				
			n of				
			All-Carbo				
			n Caroo				
			Quaternar				
			Quaternar				
			y Storococci				
			Siereoceni				
			ers,				
			Angew.				
			Chem. Int.				
			Ed. 2015,				
			54,				
			13711 –1				
			3714				

2015	Zhaobin Wang, Jianwei Sun*	Recent Advances in Catalytic Asymmetr ic Reactions of o-Quinon e Methides, Synthesis 2015, 47, 3629-364 4.	2017	Yes	Yes	Yes
2015	Zengwei Lai, Zhaobin Wang, Jianwei Sun*	Organoca talytic Asymmetr ic Nucleophi lic Addition to o - Quinone Methides by Alcohols, Org. Lett. 2015, 17, 6058–606 l	2017	Yes	Yes	Yes
2016	Zengwei Lai, Jianwei Sun*	Enantiose lective Addition of Thiols to ortho-Qui none Methides Catalyzed by Chiral Phosphori c Acids, Synlett 2016, 27, 555–558	2017	Yes	Yes	Yes

2016		Wen Yang,	Organoca	2017	Yes	Yes	Yes
		Jianwei	talytic				
		Sun*	Enantiose				
			lective				
			Synthesis				
			of				
			Ĩ,4-Dioxa				
			nes and				
			Other				
			Oxa-Hete				
			rocycles				
			by				
			Öxetane				
			Desymmet				
			rization,				
			Angew.				
			Chem. Int.				
			Ed. 2016,				
			55,				
			1868 – 18				
			71				
2016		Yuk Fai	A one-pot	2017	Yes	Yes	Yes
		Wong,	oxidation/				
		Zhaobin	cycloaddit				
		Wang,	ion				
		Wen-Xu	cascade				
		Hong,	synthesis				
		Jianwei	of				
		Sun,*	2,4-diaryl				
		-	chromans				
			via				
			ortho-qui				
			none				
			methides,				
			Tetrahedr				
			on, 2016,				
			72,				
			2748-275				
			1				

-						
2016	Yuk Fai	Chiral	2017	Yes	Yes	Yes
	Wong,	phosphori				
	Zhaobin	c acid				
	Wang,	catalyzed				
	Jianwei	asvmmetri				
	Sun*	c				
	~ • • • •	addition				
		of				
		nanhthols				
		naphinois				
		10				
		para-quin				
		one				
		<i>methides</i> ,				
		Org.				
		Biomol.				
		Chem.,				
		2016,				
		14,				
		5751-575				
		4				
2016	Wen Yang.	Enantiose	2017	Yes	Yes	Yes
2010	Zhaohin	lective	2017	105	105	105
	Wang and	Oratana				
	wang, anu	Ding				
	Jianwei	King				
	Sun*	Opening				
		with				
		Chloride:				
		Unusual				
		Use of				
		Wet				
		Molecular				
		Sieves for				
		the				
		Controlle				
		d Release				
		of HCl				
		Angew				
		Chem Int				
		Ed 2016				
		<i>Lu. 2010,</i>				
		6051 60				
		50				
2016	TT	Jo	2017	Var	Vaa	Vaa
2010			2017	1 05	1 68	1 68
	Kongbiao	Enantiose				
	l ong,	iective				
	Jianwei	Aza-Pianc				
	Sun*	atelli				
		Rearrang				
		ement,				
		Angew.				
		Chem. Int.				
		Ed. 2016.				
		55.				
		15125 -1				
		5128				

2016		Wen Yang,	N-Heteroc	2017	Yes	Yes	Yes
		Weimin	yclic				
		Hu, Xiuqin	Carbene				
		Dong, Xin	Catalyzed				
		Li, Jianwei	g-Dihalo				
		Sun*	methylena				
			tion of				
			Enals by				
			Single-Ele				
			ctron				
			Transfer,				
			Angew.				
			Chem. Int.				
			Ed. 2016,				
			55,				
			15783 –1				
			5786				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper*. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			repori)			
Aug, 2014	Organocatalytic	The 29 th Annual	2014	Yes	Acknowledged	No
Beijing	Asymmetric	National Meeting of			in the abstract	
	Ring-Opening	Chinese Chemical			and also	
	of Strained	Society			verbally in the	
	Rings	-			presentation	

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
		_	submission/
			graduation
Wanxiang Zhao	PhD	Feb. 2011	Jan. 2014
Zhaobin Wang	PhD	Sep. 2011	Aug. 2015
Hui Qian	PhD	Sep. 2011	Aug. 2015
Yong Wang	PhD	Sep. 2014	Jan. 2017

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

(a) With this project, we also established collaborations with other prestigious universities, such as Peking University Shenzhen Graduate School and City University of Hong Kong.

(b) Because of the initial success of this project, as a part of the research output of our group, the PI has been awarded the Thieme Chemistry Journal Award and Asia Core Program Lectureship Award.

(c) Wanxiang Zhao, one of the members of this project, has graduated with a PhD degree and is now a professor in Hunan University, China. He is also a recipient of "Young Thousand Talent Program" from the Chinese Government. He also obtained the School Research Award from the School of Science of the Hong Kong University of Science and Technology.

(d) Hui Qian is a recipient of the "Young Scientist Award" of the School of Science of Hong Kong University of Science and Technology. He is now a faculty member of Fudan University, China.

(e) Zhaobin Wang graduated with a PhD degree and is currently a postdoctoral fellow at Caltech.