RGC Ref.: M-CUHK410/12

(please insert ref. above)

The Research Grants Council of Hong Kong SRFDP & RGC ERG Joint Research Scheme <u>Completion Report</u>

(Please attach a copy of the completion report submitted to the Ministry of Education by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

A Gold Nanoplate-Based Plasmonic Platform for Sensing and Photoswitching Applications

	Hong Kong Team	Mainland Team
Name of Principal	Prof. WANG Jianfang	Prof. YAN Chun-Hua
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Physics/The Chinese	College of Chemistry and
Institution	University of Hong Kong	Molecular Engineering/Peking
		University
Contact Information	Room G9, Science Center	State Key Lab of Rare Earth
	North Block, The Chinese	Materials Chemistry and
	University of Hong Kong,	Applications, Peking
	Shatin, Hong Kong SAR; Tel:	University, Beijing 100871,
	+852 3943 4167; E-mail:	China; Tel: +86 10 6275
	jfwang@phy.cuhk.edu.hk	4179; E-mail:
		yan@pku.edu.cn
Co-investigator(s)		
(with title and		
Institution)		
PhD student(s) (with	Name: Mr. TAO Yuting	Name: Mr. XIAO Jia-Wen
	(changed from PhD to MPhil	(PhD student)
	study)/Mr. QIN Feng (PhD	
	student, later added)	
period of involvement)	Institution: CUHK/CUHK	Institution: PKU
	Period from	Period from
	<u>March 1, 2013 / Aug. 1,</u>	<u>March 1, 2013</u> to
	<u>2013</u> to	<u>June 30, 2015</u>
	<u>Nov. 15, 2014 / Feb. 29,</u>	
	2016	

2. Investigator(s) and Academic Department/Units Involved

Note: The Hong Kong project team must involve at least one research postgraduate student pursuing a Doctor of Philosophy degree at the UGC-funded university (PhD student) at any time throughout the project period.

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval
			(must be quoted)
Project Start date	March 1, 2013		
Project Completion date	Feb. 29, 2016		
Duration (in month)	36		
Deadline for Submission of Completion Report	Feb. 28, 2017		

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. Grow Au nanoplates with varying sizes and shapes in high yields;

2. Develop methods for depositing Au nanoplates on substrates in large areas at varying surface densities reproducibly;

3. Study the configuration-dependent plasmon coupling behaviors in Au nanoplate/nanosphere and Au nanoplate/nanorod heterodimers;

4. Demonstrate biological sensing with Au nanoplate/nanosphere structures;

5. Fabricate photoswitches with Au nanoplate/azobenzene/Au nanosphere (or Au nanorod) hybrid structures.

5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

- 1.
- 2.
- 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

There are 5 major findings out of this project.

First, we developed a method for the synthesis of Au nanoplates with different shapes, lateral sizes and thicknesses (Advanced Optical Materials 2016, 4, 76). The thickness can be varied in the range of 10–50 nm. The plasmon wavelength can be tailored from the near-infrared region to the visible region. In most previous related studies, the thickness of Au nanoplates is uncontrollable, the lateral size is very large, and the plasmon resonance is in the near-infrared region. Due to their particular geometrical structure, Au nanoplates possess unusual optical properties. Their sharp corners and straight edges offer large electric field enhancements. Their crystalline nature, which enables low plasmon damping, and large-area atomically flat surfaces make them attractive for constructing plasmon-based optical devices as well as creating meta-surfaces with controllable light transmission and reflection. Our synthetic method therefore opens a way to the use of Au nanoplates in developing ultrasensitive plasmonic sensors and other plasmon-based devices that work in the visible and near-infrared regions. Second, we developed a method for the purification of Au nanobipyramids, with the number yields reaching 100% (Advanced Optical Materials 2013, 3, 81). Au nanobipyramids have several attractive plasmonic features. Their sizes are extremely uniform. They have two very sharp tips with extremely large electric field enhancements. Their refractive index sensitivities are very high. Moreover, similar to Au nanorods, the longitudinal plasmon resonance of Au nanobipyramids can be controlled from the visible to near-infrared region. We are the first in producing such highly pure Au nanobipyramids. Our method relies on a stepwise combination of seed-mediated growth, Ag overgrowth, depletion force-induced self-separation, and final chemical etching of Ag. Systematic experimental comparison showed that Au nanobipyramids are superior to Au nanorods in terms of the plasmon peak width, refractive index sensitivity, figure of merit, two-photon photoluminescence, and surface-enhanced Raman scattering. Third, we developed a method for coating polyaniline on Au nanocrystals and realized active plasmon switching (Advanced Materials 2014, 26, 3282). Polyaniline is a conducting polymer. Its dielectric function can be varied dramatically by proton doping or electrochemical potential. By proton-doping and dedoping the polyaniline shell, we demonstrated the switching of the localized plasmon of Au nanorods and nanospheres with reversible plasmon shifts over 100 nm and modulation depths over 10 dB. Our polyaniline-coated Au nanocrystals will find intriguing applications in areas such as smart windows/mirrors, information displays, anti-counterfeiting inks, and pH-responsive photothermal systems for cancer therapy.

Fourth, we synthesized bimetallic Au/Pd nanostructures on the basis of Au nanorods and demonstrated ultrasensitive hydrogen sensing by depositing the bimetallic nanostructures on transparent glass slides (*Advanced Functional Materials* **2014**, *24*, 7328). Palladium can interact reversibly with hydrogen in a unique way through the formation of palladium hydride, leading to large changes in the dielectric function. As a result, the plasmon peak of the bimetallic nanostructure red-shifts in the presence of hydrogen and shifts back when hydrogen is removed. The plasmon shift is strongly dependent on the concentration of hydrogen in the gaseous environment.

Fifth, in collaboration with a team from Sun Yat-sen University, we fabricated arrays of submicrometer gold mushrooms with a sensing figure of merit reaching 108, which is the theoretically predicted upper limit for standard propagating surface plasmon resonance sensors (*Nature Communications* **2013**, *4*, 2381). The high figure of merit was understood to arise from the interference between Wood's anomaly and localized plasmon resonance modes. Our plasmonic array sensors are a promising candidate for label-free biomedical sensing.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Among the results out of this project, there are three aspects that are worthy of further development. The first is the successful synthesis of circular Au nanoplates with controllable diameters and thicknesses. Three-dimensional Au nanospheres have played a central role in the development of the field of nanoplasmonics, because of their spherical symmetry, easy assembly into superstructures at different size scales, and the existence of analytical solutions to Maxwell's equations for spherical particles. Circular Au nanoplates can be treated as the pseudo-two-dimensional counterparts to three-dimensional Au nanospheres. The availability of high-quality circular Au nanoplates is expected to stimulate the study of their physical and chemical properties as well as the exploration of their technological applications. The second is the rich Fano resonance behaviors exhibited by Au nanoplate-based heterostructures. The Fano resonance is highly dependent on the geometry, size, relative position, the polarization of the excitation light, and the dielectric function of the supporting substrate. Fano resonance is nearly a universal phenomenon in many sub-fields of physics. It also has important scientific and technological applications, such as electromagnetically induced transparency for slowing or even stopping light. Our results on the Fano resonance in Au nanoplate-based heterostructures will greatly stimulate the exploration of Fano resonance for ultrasensitive sensing, surface-enhanced spectroscopy, nonlinear optics and active plasmon switching. The third is the coating of a conducting polymer, polyaniline, on colloidal Au nanocrystals for the realization of active plasmon switching. Compared with those demonstrated in previous works, our plasmonic switches exhibit a superior switching performance in both the modulation depth and plasmon shift. We expect that out method can also be applied to many other plasmonic nanostructures to achieve even better switching performances. We are currently working actively on all of these aspects.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

In this project, we have successfully made gold nanoplates, which can be triangular, hexagonal or circular. The lateral size can be varied from ~100 nm to several micrometers, and the thickness can be adjusted from ~10 nm to ~50 nm. These nanoplates exhibit intense plasmon resonance, which is collective oscillation of conduction-band electrons. At the plasmon resonance energy, these nanoplates possess many interesting optical properties. They can absorb or scatter light strongly; they can focus light into nanoscale spatial volumes; their plasmon resonance peak is extremely sensitive to the surrounding environment. Therefore, these nanoplates can have many applications in optics, spectroscopy, sensing, imaging, medical diagnostics and therapy. The unique plate geometry of Au nanoplates can greatly facilitate their deposition on flat substrates and assembly with other molecular species. Therefore, Au nanoplates are particularly appealing for various plasmonic applications. Because different applications often work at different light wavelengths, Au nanoplates having different plasmon resonance wavelengths will be strongly desirable. By synthetically controlling their sizes, we can tailor the plasmon resonance wavelength of Au nanoplates. This is the key motivation for and the greatest achievement from our project.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.))

The Latest Status of Publications		Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible		
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
	(For paper			belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the	,	Scheme	(Yes or No)
	not vet		(-1)	teams and	pages and	relevant		(Yes or No)	. ,
	published)			denote the	other	progress		· /	
	<i>P</i>			corresponding	necessarv	report)			
				author with an	publishing	1 /			
				asterisk*)	details				
				,	specified)				
2013				Yang Shen	Plasmonic	2014	Ves	Ves	No
2013				L'aubre		2011	105	105	110
				Jiannua	gold				
				Zhou,	mushroo				
				Tianran	m arrays				
				Liu. Yuting	with				
				Tao Ruihin	refractive				
				Jiang,	index				
				Mingxuan	sensing				
				Liu, Guohui	figures of				
				Xiao	merit				
				Jinhoo 7hu	opproachi				
				$\frac{1}{21}$ $\frac{1}{12}$	approach				
				Zhang-Kai	ng the				
				Zhou,	theoretical				
				Xuehua	limit,				
				Wang	Nature				
				Chan aiun	Communi				
				Chongjun	Communi				
				Jin*,	cations,				
				Jianfang	2013, 4,				
				Wang*	2381 (1 -				
				, ang	$\frac{2501}{10}$				
2014				хт [.] т [.]	<i>7)</i>	2014	X 7	x 7) T
2014				Nina Jiang,	(Gold	2014	Yes	Yes	No
				Lei Shao,	nanorod				
				Jianfang	core)/(pol				
				Wang*	vaniline				
				··· ang	shall)				
					shell)				
					plasmonic				
					switches				
					with large				
					nlasmon				
					chifts and				
					sints and				
					modulatio				
					n depths,				
					Advanced				
					Materials				
					2014 26				
					2014, 26,				
					3282 -				
					3289				

2014		Ruibin Jiang, Feng Qin, Qifeng Ruan, Jianfang Wang*, Chongjun Jin*	Ultrasensi tive plasmonic response of bimetallic Au/Pd nanostruct ures to hydrogen, Advanced Functiona 1 Materials, 2014, 24, 7328 -	2016	Yes	Yes	No
2015		Qian Li, Xiaolu Zhuo, Shuang Li, Qifeng Ruan, Qing-Hua Xu, Jianfang Wang*	7337 Productio n of monodisp erse gold nanobipyr amids with number percentag es approachi ng 100% and evaluation of their plasmonic properties , Advanced Optical Materials, 2015, 3,	2016	Yes	Yes	No
2015		Nina Jiang, Qifeng Ruan, Feng Qin , Jianfang Wang* , Hai-Qing Lin	801 - 812 Switching plasmon coupling through the formation of dimers from polyanilin e-coated gold nanospher es, Nanoscale , 2015, 7, 12516 - 12526	2016	Yes	Yes	No

2015			Yang Shen,	Dislocate	2016	Yes	Yes	No
			Tianran	d				
			Liu,	double-la				
			Qiangzhong	yered				
			Zhu,	metal				
			Jianfang	gratings:				
			Wang,	refractive				
			Chongjun	index				
			Jin	sensors				
				with high				
				figure of				
				merit,				
				Plasmonic				
				s, 2015,				
				10, 1489 -				
				1497				
2016			Feng Qin,	Thickness	2016	Yes	Yes	No
			Tian Zhao,	control				
			Ruibin	produces				
			Jiang, Nina	gold				
			Jiang,	nanoplate				
			Qifeng	s with				
			Ruan,	their				
			Jianfang	plasmon				
			Wang*,	in the				
			Ling-Dong	visible				
			Sun*,	and				
			Chun-Hua	near-infra				
			Yan*,	red				
			Hai-Qing	regions,				
			Lin	Advanced				
				Optical				
				Materials,				
				2016, 4,				
				76 - 85				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			
3/2014/Dall	Effect of surface	247th ACS National	2016	Yes	Yes	No
as	coatings on the	Meeting & Exhibition,				
	cytotoxicity and	Website:				
	cellular uptake	https://www.acs.org/c				
	of gold	ontent/acs/en/meeting				
	nanorods	s/nationalmeetings/pro				
		gramarchive.html				

12/2014/Bos	Bimetallic	2014 MRS Fall	2016	Yes	Yes	No
ton	nanostructures	Meeting & Exhibit,				
	and their	Website:				
	plasmonic	https://www.mrs.org/F				
	properties	all2014				
12/2015/Ho	Colloidal	2015 International	2016	Yes	Yes	No
nolulu	plasmonic metal	Chemical Congress of				
	nanocrystals	Pacific Basin				
		Societies (2015				
		PacifiChem), website:				
		http://www.pacifiche				
		m.org/				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Mr. TAO Yuting	PhD (transformed into MPhil in 2014)	August 2012	April 2015
Mr. QIN Feng	PhD	August 2013	July 2016

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

None