RGC Ref.: N_PolyU601/16 NSFC Ref. : 21661162002

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Preparation of High Performance Cathodes for Li-S Batteries and Their Property and Mechanism Study: Enhancement of Electron and Lithium Ion Transmission and Anchoring of Polysulfides

	Hong Kong Team	Mainland Team
Name of Principal Investigator (<i>with title</i>)	Guohua CHEN (Prof.)	Yuanfu DENG (Prof.)
Post	Chair Professor	Professor
Unit / Department / Institution	Mechanical Engineering/ The Hong Kong Polytechnic University	Chemistry and Chemical Engineering/ South China University of Technology
Contact Information	Guohua.chen@polyu.edu.hk	chyfdeng@scut.edu.hk
Co-investigator(s) (with title and institution)	N.A.	N.A.

2. Investigator(s) and Academic Department/Units Involved

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 Jan 2017		
Project Completion date	31 Dec 2020		
Duration (in month)	48		
Deadline for Submission of Completion Report	31 Dec 2021		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- Prepare hetero-atom(s) doped carbons (HCs) with micro- and meso-pores to enhance the conductivity and lithium ion (Li+) transmission and to anchor sulfur/polysulfides for S/HCs cathode materials during the discharge/charge cycles;
- 2. Modify S/HCs cathode materials by lithium ion conductor (LIC) coating for further enhancement of Li+ transmission, adsorption and anchoring of sulfur/ polysulfides of the cathode materials;
- 3. Investigate the diffusion of intermediate products, interface structure and phase transformation of S/HCs@LIC during cycling by simulation, in-situ/ex-situ physicochemical and electrochemical characterizations, and reveal the mechanism of polysulfide anchoring;
- 4. Fabricate the large-capacity prototype Li-S batteries using S/HCs@LIC cathode materials, and investigate the impacts of the particle size of S/HCs@LIC's, electrode compositions (S/HCs@LIC, conductor, binder and additives), polysulfide absorbents and fabrication process on the porous structure and interface properties of the as-prepared electrodes, the electron and Li+ transfer, and electrochemical performance of the batteries;
- 5. Fabricate S/HCs@LIC cathode materials with a specific capacity of ≥ 1000 mAh g⁻¹ based on S mass (700 mAh g⁻¹ based on S/HCs@LIC mass) and a capacity retention ratio of over 80% after 1000 cycles at 1 C rate (1600 mA g⁻¹), and provide electrodes based on S/HCs@LIC active material for practical applications of Li-S batteries.
- 5.2 Revised Objectives

N.A.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

A dual function cathode consisting of WS₂ and porous carbon nanosheets was synthesized. The composite depicted very strong affinity toward lithium polysulfides with rapid transport of lithium ions. The cathode demonstrated excellent cycling stability and rate capability by delivering a reversible specific capacity of 419mAh/g at 8C after 500 cycles with low capacity fading at 0.04% per cycle. At high sulfur loading of 4.7mg/cm^2 , it delivered 3.4 mAh/cm² areal capacity after 100 cycles at 0.5C. The synergistic effect of strong chemical interaction between lithium polysulfides and WS₂, and the superior electronic conductivity of carbon nanosheets are found responsible. The EIS analysis shows that even after 400 cycles, the interfacial and charge transfer resistances only increased by 1.2 and 1.7Ω , respectively, describing faster electrochemical kinetics by inhibiting the formation of insulating layer of lithium sulfide (Li₂S). Impressively, the electrode has a low decay rate of 0.048% per cycle over 1000 cycles at 1 C current rate. (Majumdar et al., 2019 - JES). An intrinsically polar MoS₂ /g-C₃N₄ was also designed as the sulfur host. The strong chemical interaction of lithium polysulfides with MoS₂ and nitrogen rich g-C₃N₄ restrict the shuttling effect of polysulfides, showing comparable performance to that of WS₂/C. (Majumder et al., 2019, -JPS)

A nitrogen doped porous carbon polyhedron coupled with a well distributed α -CoS/Co heterostructure mediator was designed and prepared. It exhibits high sulfur utilization with a 1611.4 mAh/g first discharge capacity and a low decay rate of 0.042% per cycle at 0.5 C for over 800 cycles. The interaction between polysulfide and the cathode surface was investigated using density functional theory (DFT) calculations. It is found that α -CoS in the heterostructure has a strong adsorption with soluble polysulfides, and Co metal particles facilitate the fast conversion of polysulfides. (Gu et al., 2019)

Three nitrogen-doped porous carbons (NDPCs) with the ultrahigh specific surface areas were prepared via a one-step activation of the biomass waste. The higher volume ratio of marco-mesopores to micropores of the substrate can greatly enhance the rate capability of the S/NDPC cathodes, due to the improved electrolyte penetration. Meanwhile, the higher nitrogen content of the NDPC improved the cycle stability of the S/NDPC cathode. It exhibits specific capacities of 926.1 and 815.8 mAh/g at 0.5 and 1.0 C rate, respectively, with a capacity fading rate of only 0.067% per cycle after 500 cycles at 1.0 C. (Wang et al., 2019)

Commercial separator was modified with different functional materials to improve the performance of the Li-S batteries by using Co(OH)2@CNF/KB (Yang et al. 2018), carbon nanofiber/CoS/Ketjen black (Yang et al., 2019- CEJ), carbonized polydopamine (C-PDA)-coated hollow carbon nanofibers (CNFs) with TiO₂ nanoparticles (Yang et al., 2019 EA), nitrogen-enriched hierarchical porous carbon (Wang et al., 2020) or crosslinked triazine frameworks (Zhu et al., 2021).

For the anode part, 2D porphyrin paddle-wheel frameworks-3 (PPF-3) microsheets were designed as a scaffold for uniform Li deposition. (Liu et al., 2021). A conducting and flexible polymer EDOT-PDMS was synthesized to improve the cycling performance of high-capacity Si anode with very good results obtained (Wang et al., 2021). TiO₂ nanorods with the controlled phase compositions were prepared for anode of LIBs (Gao et al., 2018).

Li-S pouch cell has been fabricated in collaboration with a spin-off company of the PI with capacity of 400 mAh and estimated energy density of >350 Wh/kg and redox cycling stability of over 200 cycles with coulombic efficiency>99%. One patent is under preparation.

The prepared functionalized porous carbon was found to be good materials for the fabrication of supercapacitors with five high quality papers published as some extra related research outputs, as seen in Zou et al., (2018; 2019; 2020); Tan et al., (2020), Huang et al., (2020).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

For Li-S battery to be commercialized, the problems regarding the shuttle effect from the cathode part has sufficient approaches to solve it. As shown in the present study, various porous carbons with functionalized surface and the modified separator can provide very satisfactory results. However, in order for the potential of Li-S to be fully realized, the stable operation of Li metal anode remains a question to be answered. This is an internationally challenging problem. The PI has been trying to build different Cu current collectors, or to modify the surface of the Li metal foil to improve the performance of Li metal anode through the suppression of dendrite formation, or avoiding the penetration of the separator by the dendrites formed. However, there are much more to be done in terms of materials synthesis, mechanistic understanding of the deposition and stripping of Li during charging/discharging, and especially the large-scale operation with not highly excess Li supply and lean electrolyte, in order to have high energy density. Another hot research area related to Li-S is the solid or semi-solid (gel) electrolyte utilization. It requires high Li⁺ conducting materials at room temperature with very good interfacial adherence with cathode and anode.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Lithium-sulfur battery has the advantage of high energy density and low cost. It has not been commercialized because of the short service life problem caused by sulfur cathode as well as Li metal anode. For the former, the polysulfides formed during discharge can dissolve in liquid electrolyte and diffuse to anode side without going through the necessary redox reaction. For the latter, the formation of Li dendrite remains a problem. This research focused on solving the problems at the cathode by developing porous carbon to anchor the lithium polysulfides. Different chemicals were embedded on the surface of the porous carbon to enhance the interaction between the surface and polysulfides such as N, CoS, WS₂. The porous carbon can be derived from carbon containing chemicals or pyrolysed biomass. Physical, chemical and electrochemical analysis reveal the mechanism for the improvement. The porous carbon can be a good host for sulphur cathode with excellent energy density obtained, well over two times of the currently available lithium ion batteries. Li-S pouch cell made to provide about 400 Wh/kg energy with reasonable stability with the modified commercial separator. With the improvement of Li metal anode, the commercialization of Li-S battery is possible in near future.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The I	atest Status	of Publi	cations	Author(s)	Title and	Submitt	Attached	Acknowledged
Year of	Year of	Under	Under	(bold the	Journal/Book	ed to	to this	the support of
	Acceptance	Review	Preparation	1	(with the volume,	RGC	report	this Joint
Puenenien	(For paper		Troparation	belonging to	pages and other	(indicate		Research
	accepted		(optional)	the project	necessary		No)	Scheme
	but not yet		(optionicit)	teams and	publishing details	ending of	100)	
	published)			denote the	specified)	the		(Yes or No)
	I			correspondin	specifica)	relevant		
				g author with		progress		
				an asterisk*)		report)		
2018				Yang, YB;	Net-Structured	2018	https://p	Yes
				Zhang, LT;	Filter of		ubs.acs.	
					Co(OH) ₂ -Anchore		org/doi/f	
					d Carbon		ull/10.1	
					Nanofibers with		$\frac{021}{acss}$	
				GH*,	Ketjen Black for		uscheme	
				,	High Performance		ng.8b04	
					Li-S Batteries,		468	
					ACS		100	
					SUSTAINABLE			
					CHEMISTRY &			
					ENGINEERING,			
					6(12)			
					(2018)17099-171			
2010				7 1 1	07	2010	1	x 7
2018				Zou, K.X. ;	Hierarchically	2018	https://w	Yes
				Deng,	porous		ww.scie	
				Y.F.*;	nitrogen-doped		ncedirec	
				, , , ,	carbon derived		t.com/sc	
				Qian, Y.X.;	from the		ience/art	
				Wang,	activation of		icle/pii/	
				Y.W.; Li,	agriculture waste		S037877	
				Y.W.;	by potassium		5317316	
				Chen, G.H.	hydroxide and		890?via	
					urea for high		%3Dihu	
					performance		<u>b</u>	
					supercapacitors			
					Journal of Power			
					Sources 378			
					(2018) 579–588			
					DOI:			
					10.1016/j.jpowso			
					ur.2017.12.081			

2018	Man Gao, Yubo Bao, Yunxian Qian*, Yuanfu Deng*, Yingwei Li, and Guohua Chen	Porous Anatase-TiO2(B) Dual-Phase Nanorods Prepared from in Situ Pyrolysis of a Single Molecule Precursor Offer High Performance Lithium-Ion Storage Inorganic Chemistry 57 (2018) 12245–12254 DOI: 10.1021/acs.inorg chem.8b01948	2018	https://p ubs.acs. org/doi/ 10.1021/ acs.inor gchem.8 b01948	Yes
2019	, , ,	Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO ₄ electrolyte, Journal of Colloid and Interface Science 537 (2019) 475–485 DOI: 10.1016/j.jcis.201 8.11.050	2018	https://w ww.scie ncedirec t.com/sc ience/art icle/pii/ S002197 9718313 64X?via %3Dihu b	Yes

2019	Wang, S.X.; Zou, K.X.; Qian, Y.X.; Deng, Y.F.*; Zhang L.;	Insight to the synergistic effect of N-doping level and pore structure on improving the	2018	https://w ww.scie ncedirec t.com/sc ience/art icle/pii/	Yes
	Chen, G.H.	electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries		<u>S000862</u> 2318312 533?via %3Dihu b	
		Carbon 144 (2019) 745-755 doi.org/10.1016/j. carbon.2018.12.1 13			
2019	Deng,	carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries, ELECTROCHIM ICA ACTA 297(2019) 641-6 49 DOI: 10.1016/j.el ectacta. 2018.12.009	2018	https://w ww.scie ncedirec t.com/sc ience/art icle/pii/ S001346 8618327 075	
2019	Majumder, S.; Shao, M.H.; Deng, Y.F.; Chen, G.H.*	Two Dimensional WS2/C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries, JOURNAL OF THE ELECTROCHE MICAL SOCIETY, 166 (2019) A5386-A5 395 DOI: 10.1149/2.0 501903jes	2018	http://jes .ecsdl.or g/conten t/166/3/ A5386.f ull.pdf	Yes

2019			C C D '	L. C.	1 11	V
2019				In Situ Grown	https://p	
			Z.W.;	α-CoS/Co	ubs.rsc.	
			Majumder,	Heterostructrue	rg/en/co	
			S; Huang,	on Nitrogen	ntent/ar	
			B.L. and	Doped Carbon	icleland	
			Chen, GH*	Polyhedron	<u>ng/2019</u>	
				Enabling	<u>NR/C91</u>	
				Trapping and	R07249	
				Catalysis of	G#!divA	A
				Polysulfides as	<u>bstract</u>	
				Cathode towards		
				High		
				Performance		
				Lithium Sulfur		
				Battery,		
				Nanoscale,		
				43(2019)20579-2		
				0588,		
				doi.org/10.1039/C		
				9NR07249G		
2019			Yang, YB;	CoS-interposed	https://v	<u>v</u> Yes
			Wang, S.X.,	and Ketjen	ww.scie	
			Zhang,	black-embedded	ncedire	
			L.T., Deng,	carbon nanofiber	t.com/se	
			YF*; Xu,	framework as a	ience/ar	t
			H., Qin,	separator	icle/pii/	
			X.S. and	modulation for	S13858	
			Chen, GH*	high performance	4719304	
			,	Li-S batteries,	991	
				Chemical		
				Engineering		
				Journal, 2019,		
				369(2019) 77-86.		
				DOI: 10.1016/j.c		
				ej.2019.03.034		
2019			Majumder,	Ultrathin Sheets	https://v	v Yes
			S; Shao,	of MoS2/ g-C3N4	ww.scie	
			MH; Deng,	Composite as a	ncedire	
			YF; Chen,	Good Hosting	t.com/se	
			GH,	Material of Sulfur	ience/ar	
				for	icle/pii/	
				Lithium-Sulfur	<u>S03787</u>	
				Batteries, Journal	531930	
				of Power Sources,	032?via	
				431(2019)93-104,	%3Dihu	
				doi.org/	b	-
				10.1016/j.jpowso		
				ur.2019.05.045		
L		I		41.2017.00.015	II	

2020		Wang, S.,	Toward a		https://w	Vac
2020		Liu, X.,	practical Li-S		ww.scie	i es
		Zou, K.,	battery enabled		ncedirec	
		Deng,	by synergistic		t.com/sc	
		Y.F.*,	confinement of a		ience/art	
		Chen, G.H.			icle/pii/	
		Chen, O.H.	enriched porous		<u>S157266</u>	
			carbon as a		5719310	
			multifunctional		<u>653</u>	
			interlayer and		000	
			sulfur-host			
			material, Journal			
			of Electro-			
			analytical			
			Chemistry, 858			
			(2020) Article			
			number 113797,			
			DOI:			
			10.1016/j.jeleche			
			m.2019.113797			
2020		Tan, HQ;	Understanding of		https://w	Yes
		Huang, H;	the effect of		ww.scie	
			nitrogen-doping		ncedirec	
		Qian, YX;	level and		t.com/sc	
		Deng, YF*;	micropore		ience/art	
		Chen, GH	volume ratio on		icle/pii/	
			the capacitive		S001346	
			performance of		8620310	
			N,S-codoped		<u>32X</u>	
			hierarchically			
			porous carbon,			
			ELECTROCHIM			
			ICA ACTA,			
			354(2020),			
			Article Number:			
			136639, DOI:			
			10.1016/j.electact			
2020		-	a.2020.136639		1	• •
2020		Zou,	Nitrogen-rich		https://w	Yes
			porous carbon in		ww.scie	
		ZX; Deng,	ultra-high yield		ncedirec	
					t.com/sc	
		G.H.,	activation of		ience/art	
			biomass waste by		icle/pii/	
			a novel eutectic		S000862	
			salt for high		<u>2320300</u> 452	
			performance		<u>452</u>	
			Li-ion capacitors,			
			Carbon, 161			
			(2020) 25-35; DOI:			
			10.1016/j.carbon.			
			2020.01.045			
			2020.01.043			

2020		Huang,	An		https://p	Ves
2020			environmentally		ubs.rsc.o	1 05
			friendly strategy		rg/en/co	
		KX; Deng,			ntent/art	
			nitrogen-rich		iclepdf/2	
			hierarchical		1000000000000000000000000000000000000	
		, С.П.,				
			porous carbon for		<u>9cc0885</u>	
			high-	-	<u>4g</u>	
			performance			
			supercapacitors,			
			Chemical			
			Communications,			
			56 (2020)			
			2182-2185; DOI:			
			10.1039/c9cc088			
2021		X 7 71	54g		X 7	X 7
2021	~		Highly crinkled		Yes	Yes
		Yuanfu	and inter-			
		0	connected			
			nitrogen, oxygen			
		Chen*	and sulfur			
			co-doped carbon			
			nanosheets			
			modified			
			separator for			
			improved			
			lithium-sulfur			
			batteries, For			
			Journal of			
			Materials			
			Chemistry A			
2021	~		Metal organic	ľ	Yes	Yes
		Junye	framework			
		0,	microsheets			
			scaffold for stable			
		Yuanfu	lithium metal			
			anode, For			
		Guohua	Chemical Comm			
		Chen*				
2021	~		Conductive and	ľ	Yes	Yes
		Wang,	flexible coating of			
		Shenhua	Si nanoparticles			
		Song*,	for the anode in			
			Li-ion batteries			
			For Journal of			
		Guohua	Materials			
		Guohua Chen*	Materials Chemistry A			

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	to this report (Yes or No)	Scheme (Yes or No)
August/2017 /HK	Two Dimensional MoS2/C composite as a potential cathode material for Lithium-sulfur batteries	The 17 th Congress of Asian-Pacific Confederation of Chemical Engineering	2018	Yes	Yes
August/2017 /HK	CoS-interposed and Ketjen Black-Embedded Carbon Nanofiber Framework as a Separator Modulation in Li-S Batteries	The 17 th Congress of Asian-Pacific Confederation of Chemical Engineering	2018	Yes	Yes
June/2018/ Seattle	Ultrathin Sheets of MoS ₂ /g-C ₃ N ₄ Composite as a Promising Cathode Hosting Material of Sulphur for Lithium-Sulphur Batteries with Long Cycle Life and High Rate Capability	The 229 ECS Meeting	2018	Yes	Yes
June/2018/ Kyoto	Two Dimensional WS ₂ /C Nanosheets as a Polysulphide Immobilizer for High Performance Lithium-Sulphur Batteries	The 19 th International Meeting on Lithium Batteries	2018	Yes	Yes

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Yuebin Yang	PhD	September 1, 2014	August, 2017
Qing Li	MPhil	September 1, 2016	August, 2017
Soumyadip Majumder	PhD	September 1, 2015	August, 2019
Yutong Liu	MPhil	September 1, 2017	August, 2020
Jingwei Wang	PhD	September 1, 2018	December, 2020

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

The PI received the following recognitions:

•	Merit Award of Research, Faculty of Engineering, HKPolyU	2020
•	Top 100 Most Influential Materialists in China	2019
•	Alumnus of the Year, Dalian University of Technology	2019
•	Endowed Otto Poon Charitable Professor	2019

During this period of time, the PI also received following related research grants award:

Project Title and Duration	Grant	Amount
	Source	HKD
Power-based high value and smart energy system for drones	GD STC	1,100,000
(2021-2022)		
Investigation and Preparation of Long Cycle Life and Intrinsic Safe	GD STC	3,888,889
Lithium-Sulfur Batteries (2019-2021)		
高性能锂硫电池体系与关键材料研究 Research on	Shenzhen	3,341,400
High-performance Lithium-sulfur Battery System and Key	STIC	
Materials (2019-2021)		
Advanced Electrode Materials for High Performance	HK Scholar	378,000
Electrochemical Batteries (2020-2022)		
Large-size Lithiophilic Two-dimensional Metal Organic	PolyU Postdoc	766,000
Frameworks on a Current Collector to Stabilize Lithium Deposition		
for Lithium Metal Batteries (2019-2021)		

Notably, the project "Investigation and Preparation of Long Cycle Life and Intrinsic Safe Lithium-Sulfur Batteries (2019-2021)" is part of a 25 million RMB project funded by GD STC for a demonstration of Li-S powered EV with the indigenous technologies. The Co-I of this project is also a partner of this project.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs arising directly from this research project [or conference]	17	4	0	0	0