(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Investigations on Two-dimensional Layered Materials with Strong Interlayer Coupling

	Hong Kong Team	Mainland Team
Name of Principal	Dr. Yang Chai	Prof. Wei Ji
Investigator (with title)		
Post	Associate Professor	Professor
Unit / Department /	Applied Physics /	Department of Physics/
Institution	The Hong Kong Polytechnic	Renmin University of China
	University	
Contact Information	Email: <u>ychai@polyu.edu.hk</u>	Email: wji@ruc.edu.cn
Co-investigator(s)	Prof. Shu Ping Lau	
(with title and	_	
institution)		

2. Investigator(s) and Academic Department/Units Involved

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	1 Jan 2018	N/A	1 Jan 2018
Project Completion date	31 Dec 2021	N/A	31 Dec 2021
Duration (in month)	48	N/A	48
Deadline for Submission of Completion Report	31 Dec 2022	N/A	31 Dec 2022

NSFC/RGC 8 (Revised 01/18)

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. To theoretically predict two-dimensional (2D) layered materials with strong interlayer coupling, tunable direct bandgap, and high carrier mobility.

2. To experimentally prepare 2D layered materials and characterize electrical, photoelectric, vibrational, thermal and thermoelectric properties of those 2D layered materials.

3. To theoretically understand the underlying mechanisms governing these experimental phenomena, and experimentally validate the physical properties predicted by theoretical calculations.

5.2 Revised Objectives

N.A.

NSFC/RGC 8 (Revised 01/18)

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

It is generally considered that the interlayer coupling of two-dimensional materials is a weak van der Waals effect, and the effect on its properties is insignificant. Recently, some two-dimensional materials (such as black phosphorus, PtS₂, PtSe₂, Te and some oxide materials) have new properties of strong interlayer electron coupling. This property is reflected in its various properties with strong layer dependency characteristics. This is a new degree of freedom that can be used to control material properties, design and build new devices. However, at present, the essential factors affecting the coupling between layers, the properties of the single-layer, multi-layer, heterojunction they constitute, and the electrical, optical, thermal and other physical properties of the construction device are still poorly understood. The project predicts several emerging layered materials with strong interlayer and inter-chain coupling. For example, tellurium exhibits the unique characteristics, such as high mobility, adjustable bandgap, approximate direct bandgap, and efficient photoelectric conversion.

Specifically, the project explored in depth the layer thickness-related band gap regulation, high carrier mobility, anisotropic mechanics and transport, optical absorption rate and environmental stability of multilayer α phase tellurium elemental crystals (*Science Bulletin* 2018, 63 (3):159~168; *Nanoscale*, 2018, 10(47), 22263-22269; *Chinese Physics B*, 2020, 29(9), 097103). It was found that the mutual transformation of different phases of Te can be regulated by the method of charge doping, and the energy gap regulation from 1.17 eV to 0.33 eV can be realized at the same time as the phase transition, and even the transition from semiconductors to metals. At the same time, characteristics such as chiral mixed phase, anisotropy and central inversion symmetry can be introduced in the few layers of Te. Two exceptionally stable new structures in the presence of a small layer of Te were predicted, namely the Epsilon phase and the Zeta phase. We also show strong inter-chain interaction in quasi 1D gold selenide (AuSe), which possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior (*Science Bulletin*, 2020, 65, 17, 1451-1459). We also investigate the interaction between single atoms and PtS₂ for their electrochemical activity (*ACS Appl. Mater. Interfaces* 2020, 12, 18, 20448–20455).

It still remains a great challenge to controllably grow 2D tellurene (Te) with good repeatability, uniformity and highly aligned orientation using vapor growth method. We design a Cu foil-assisted alloy-buffer-controlled growth method to epitaxially grow aligned single-crystalline 2D Te on an insulating mica substrate, providing a method to grow aligned high-quality 2D Te in a controllable manner. We also fabricate the field-effect transistors with high carrier mobility. Through the magneto-transport studies, we reveal giant magnetoresistance, and unusual reentrant metallic behavior in AuSe and demonstrate field-effect chirality devices with PtSe₂ (Adv. Func. Mater., 2021, 31, 2104192). In addition, we also study their interaction for highly efficient electrochemical reactions, including tullurene (Mater., Today, Ene., 2021, 21, 100720) and boron doping effect on the selenide (ACS Nano, 2019, 13(10), 11469; ACS Nano, 2021, 15(5), 8537). We study the lattice oxygen redox chemistry in the strongly correlated oxides and characterize their electrochemical properties (Energy Environ. Sci., 2021, 14, 4647-4671). We assembled layered MnO₂ on the surface of holey rGO. The strong layer interaction MnO2 and rGO enables it to be an excellent between cathode materials of supercapacitor (Adv. Ene. Mater., 2019, 1900037).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Our findings show that the strong interlayer interaction can give rise to unique bandstructures in these 2D materials. For example, the two spin-polarized bands can cross in the conduction/valence bands, forming Dirac/Weyl points. The transport in Weyl/Dirac materials is

theoretically predicted to be nearly non-dissipative over long distances. Thick PtSe₂ has been verified as a Dirac semimetal and Te was recently discovered as a Weyl semiconductor. It still lacks experimental ways to efficiently control its transport. In the future, we can investigate field-effect chirality or valley devices with Dirac semimetal PtSe₂ or Weyl semiconducting Te.

The chiral anomaly can be further corroborated with planar Hall effect and nonlocal valley transport measurement, which can also be effectively modulated by external fields, showing robust nonlocal valley transport with micrometer diffusion length. Similar to charge-based FETs, the chiral conductivity in PtSe₂ devices can be modulated by electrostatic gating with an ON/OFF ratio more than 10^3 . We can also deisgn low-loss topological phase change transistors (TPCTs) based on tellurium (Te), a Weyl semiconductor. By modulating the energy separation between the Fermi level and the Weyl point of Te through electrostatic gate modulation, the device exhibits topological phase change between Weyl (Chern number $\neq 0$) and conventional (Chern number = 0) semiconductors. In the Weyl ON-state, the device possesses low-loss transport characteristics due to the global topology of gauge fields against external perturbations; the OFF-state exhibits trivial charge transport in the conventional phase by moving the Fermi level into the band gap.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Two-dimensional (2D) materials possess unique physical properties that are absent in bulk counterpart. The interlayer coupling of 2D materials is generally regarded as weak Van der Waals interaction, and has negligible influence on their physical properties. Recently, it was found that some 2D materials, e.g., black phosphorus, PtS₂ and PtSe₂, Te, and some oxides, have exceptional strong interlayer coupling. It has been shown with strong layer-dependent physical properties, such as, bandstructures, lattice constant, and vibration properties. This strong layer-dependence is a new dimension to tune the properties of materials, and can be employed to design new devices structures. However, the key factors for determining the interlayer coupling are so far yet to be clearly revealed. It is still unclear any other 2D materials beyond BP, PtS2, PtSe2, Te belong to this category with strong interlayer coupling. It is a fundamental interest to investigate the physical properties of monolayers, few-layers and heterojunctions and the device performance constructed with these 2D materials. This project aims to carry out experimental and theoretical investigations on these 2D materials with strong interlayer coupling. We start from revealing the key factors governing interlayer couplings of 2D materials, and find parameters to classify them. Based on these understandings, new members of the materials with strong interlayer coupling will be predicted in theory and synthesized by various experimental methods. Our ultimate goals is to identify a few specially advanced novel 2D materials and their device structures.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC		d the support	
publication	Acceptance	Review	Preparation	authors	Book	(indicate the			institutional
1	(For paper		1	belonging to	(with the			Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an					
				asterisk*)	details specified)				
2018				Qiao	Few-layer		Yes	Yes	2018
2010				Jingsi, Pan	Tellurium		105	105	2018
				Yuhao,	:				
				Yang Feng,					
				Wang	nsional-li				
				Cong, Chai					
				Yang, Ji	elementar				
				Wei*	у				
					semicond				
					uctor with				
					striking				
					physical				
					properties				
					, Science				
					Bulletin,				
					2018, 63				
					(3):				
2018				Wana	159~168	2019	No	Yes	2018
2018				Wang	Charge-go	2019	INO	res	2018
				Cong,	verned				
				Zhou	phase				
				Xieyu,	manipulat				
				Qiao	ion of				
				Jingsi,	few-layer				
				Zhou	tellurium,				
				Linwei,	Nanoscale				
				Kong	, 2018, 10				
				Xianghua,	(47):				
				Pan	22263~22				
				Yuhao,	269				
				Cheng					
				Zhihai,					
				Chai Yang,					
				Ji Wei *					
				JI WEI "					l

2019	Yunpeng	Valence	2019	No	Yes	2019
2019	Yunpeng Zuo, Dewei Rao, Sainan Ma, Tingting Li, Yuen Hong Tsang, Stepan Kment, and Yang Chai*	Engineeri ng via Dual-Cati on and		No	Yes	2019
		476				
2019	Cai, Bocheng Qiu, Ni Wang, Jie Xiong, Cheng Yang,	Monolithi c Integratio n of All-in-On e Supercapa citor for 3D Electronic s, Advanced Energy Materials, 2019, 1900037	2019	No	Yes	2019
2019	Peng Lang, Qiao Jingsi, Xian Jing Jing, Pan Yuhao, Ji Wei*, Zhang Wenhao*, Fu Ying Shuang*	Unusual Electronic		Yes	Yes	2019

2020	(Changlin	Two	Yes	Yes	2019
		Yan, Cong				
		Wang, Lin				
			novel			
	Z	Zhou, Pengj	allotrop			
		e Guo, Kai				
		Liu, Zhong-				
			m			
	Ι	Lu, Zhihai	few-lay			
		Cheng, Yan				
			Chines			
		C hai, Anlia	e Phys.			
			B,			
	F	Pan and We	2020, 2			
			9 0971			
			03			
2020		Jingli	Quasi	Yes	Yes	2020
			one-dime	1.00		_0_0
			nsional			
		Qiao, Kang				
			Waals			
			gold			
		Yuda	selenide			
			with			
			strong			
			interchain			
			interactio			
			n and			
			giant			
			magnetore			
			sistance,			
			Science			
			Bulletin,			
			2020, 65,			
			17,			
			1451-145			
			9.			

2020		Lejuan Cai, Ning Zhang, Bocheng Qiu, and Yang Chai*	Computati onal Design of Transition Metal Single-At om Electrocat alysts on PtS ₂ for Efficient Nitrogen Reduction , ACS Appl. Mater. Interfaces 2020, 12, 18, 20448–20 455	Yes	Yes	2020
2021		Ning Zhang and Yang Chai*	Lattice oxygen redox chemistry in solid-state electrocatal ysts for water oxidation, <i>Energy</i> <i>Environ.</i> <i>Sci.</i> , 2021, 14 , 4647-467 1	Yes	Yes	2021

2021	Ning	Metal	Yes	Yes	2021
	Zhang,	Substituti			
	Cong	on			
	Wang,	Steering			
	Jiewei	Electron			
	Chen,	Correlatio			
	Canyu Hu,				
	Jun Ma, X	i Pyrochlor			
	Deng,	e			
	Bocheng	Ruthenate			
	Qiu,	s for			
	Lejuan	Efficient			
	Cai, Yujie	Acidic			
	Xiong*, ar	nd Water			
	Yang	Oxidation			
	Chai*	, ACS			
	Chui	Nano 202			
		1, 15, 5,			
		8537-854			
		8557-854			
		0			
2021				37	2021
2021	Bocheng	Metal-free	Yes	Yes	2021
	Qiu, Cong				
	Wang,	cocatalyst			
	Jingli	with			
	Wang,	tunable			
	Ziyuan	bandgap			
	Lin, Ning	for			
	Zhang,	enhanced			
	Lejuan	photocatal			
	Cai,	ytic			
	Xiaoming	hydrogen			
	Tao, Yang				
	Chai*	n,			
	Char	Materials			
		Today			
		Energy,			
		2021, 21,			
		100720			
2021	Jiewei	Field-Effe	Yes	Yes	2021
	Chen, Tin	g ct Chiral			
	Zhang,	Anomaly			
	Jingli				
	Wang,	Devices			
	Ning	with			
	Zhang,	Dirac			
	Wei Ji,	Semimeta			
	Shuyun	l, Adv.			
		Funct.			
		Mater.202			
	Chai*				
	Zhou, and Yang Chai*				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
04/2019 Taiwan	TWO-DIMENS IONAL MATERIALS ELECTRON DEVICES: CONTACT AND DOPING	The 2019 International Symposium on VLSI Technology, Systems and Applications	2019	No	No	04/2019 Taiwan
10/2019 Suzhou/Chi na	Quasi	The 5 th International Conference on 2D Materials and Technology	2019	No	No	10/2019 Suzhou/China

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Cong WANG	PhD	13/Jan/2020	Not yet
Qiao Jingsi	PhD	1 September 2013	12 June 2018
Yang Feng	PhD	1 September 2014	18 December 2019

11.Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Dr. Yang Chai received PolyU FAST Faculty Award in Research and Scholar Activities in 2018/2019, Young Scientist Award of ICON-2DMAT in 2019, PolyU President's Award in Research and Scholar Activities in 2019/2020, NR45 Young Innovators Award in 2021, and Young Scientist of World Laureate Forum in 2021. He was elected as a member of The Hong Kong Young Academy of Sciences in 2019.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	P	eer-reviewed	Conferenc	e	Scholarly books,	Patents awarded	Other research
		journal	papers		monographs and		outputs
		publications			chapters		(Please specify)
No. of outputs	12		2		0	0	0
arising directly							
from this research							
project [or							
conference]							