RGC Ref.: N_PolyU533/17 NSFC Ref. : 51761165022

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Study on the Mechanism and Application of Energy Transfer in the Nonlinear Self-excited System for 10 MW Level Wind Turbine System

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Professor Songye ZHU	Professor Shitang KE
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Civil and Environmental	Civil Engineering /
Institution	Engineering /	Nanjing University of
	The Hong Kong Polytechnic	Aeronautics and Astronautics
	University	
Contact Information	songye.zhu@polyu.edu.hk	keshitang@163.com
Co-investigator(s)	N.A.	Prof. Tong-Guang WANG /
(with title and		Nanjing University of
institution)		Aeronautics and Astronautics

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 Jan 2018		
Project Completion date	31 Dec 2021		
Duration (in month)	48		
Deadline for Submission of Completion Report	31 Dec 2022		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To quantify wind-induced nonlinear self-exciting forces on large-scale wind turbines;
 - 2. To characterize the relationship between the generation and development of nonlinear self-excitation forces and the unsteady development of vortex flow fields;
 - 3. To investigate the energy transfer mechanism due to internal resonance among different vibration modes (or elements) in nonlinear self-excited response; and
 - 4. To develop internal-resonance-based vibration control measure by transferring energy to high vibration modes for large-scale wind turbines.
- 5.2 Revised Objectives

N.A.

NSFC/RGC 8 (Revised 01/18)

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

A total of 62 publications were generated in prestigious peer-reviewed journals in this research project, including 15 papers published by the Hong Kong PI, 22 papers published by the mainland PI, 3 papers jointly published by the HK and mainland PIs, 2 papers currently under review and 1 paper under preparation. More detailed information on these articles can be referred to Part C. The major findings are summarized as follows.

- (1) Large-scale WT systems are dynamically sensitive to the wind. An extreme loading effect can be generated under wind-sand and wind-rain combinations. The wind-induced sands and rains significantly alter the vortex characteristics and impose additional impact forces on the WT. The sands are mostly distributed in a range of 0-0.6 height of the tower due to the shadowing effect and the sand quantity considerably increases with increasing wind speed when the sand diameter is small, while it decreases with wind speed when the sand diameter is larger than a certain level. In addition, the blades and lower part of the tower are impacted by the wind-induced rains, and this effect is not evident by increasing the yaw angle.
- (2) In the overlapping part of the tower and the RNA, the rotating blades have a significant influence on the wind flow above the nacelle, and intensive vortex shedding between the tower and blades is observed. In contrast, the disturbing effect caused by the rotating blades on the tower is very weak when the RNA is located at a high height (i.e., the tower is not shadowed by the blades).
- (3) The first two vibration modes of the WT are the bending modes of the tower, which are not affected by the blades, and higher modes are the coupled vibrations between the tower, blades and nacelle. Typhoon-resistance design of large WT systems shall pay attention to multi-stage effects in local regions, and different vibration modes of the WT can be excited in different stages. For engineering practice, it is recommended that the wind vibration coefficient of the tower and blade should be taken at least as 2.15 and 2.40, respectively, considering multi-stage typhoon impact. Moreover, wind tunnel test results indicate that the internal resonance condition of the blades is strongly related to the azimuthal angle, pitch angle and wind speed.
- (4) The wake effect in a wind farm considerably influences the aerodynamic loads, energy production, and fatigue life of downstream WTs. The wake-induced wind speed deficit, turbulence intensity increase, and meandering effects, together with the wind farm topology, should be considered when studying coupled dynamics of large-scale WT systems.
- (5) Large-diameter monopile foundation significantly increases the excess pore water pressure in the soil medium, particularly at the pile toe. In general, the liquefaction risk of saturated soil weakens the foundation capacity and jeopardizes the whole system safety.
- (6) Novel NESs with newly-designed track profiles combining quadratic and quartic polynomials were proposed. Piezoelectric material was attached to blades to improve structural functionality and safety. These control methods can redistribute the input energy from low to high modes, wherein energy dissipation is more pronouncedly, and they have great potential in mitigating structural responses of WTs with better control effectiveness and robustness.
- (7) A function-enhancement energy harvesting circuit for dual-function devices was developed by using microcontroller units. The passive control and adaptive control strategies were validated experimentally and numerically. Moreover, the optimization consistency between maximization of damping power and minimization of structural kinetic energy was analytically confirmed. It provides an energy-efficient control strategy to wind turbines.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The accumulated wind power installations in the world reached 743 GW in 2020, out of which offshore wind energy accounts for 4.5%. The increasing share of offshore wind energy is mainly due to their promising characteristics against onshore wind farms. For example, wind resources in marine areas are more steady and stronger with less turbulence, and offshore wind turbines (OWTs) have less visual impact, less annoyance from noise, and do not occupy valuable land. With increasing offshore wind farms constructed in deep seas (water depth is normally larger than 50 m), multi-megawatt floating OWTs are generally adopted and designed with extremely long blades and slender towers to generate more power and dramatically lower

the levelized cost of energy. For instance, the rotor diameter of the Haliade-X 14-MW OWT developed by GE are as high as 220 m. Meanwhile, deep waters are usually associated with complex wind and wave conditions. Consequently, it is expected that floating OWTs with large turbine sizes will have high demands on structural stability, integrity and dynamic behaviour. Therefore, it is imperative to enhance the serviceability and safety of floating OWTs in consideration of the coupled dynamics in the future. The principal investigators will actively seek potential opportunities to financially support in-depth research on floating OWTs.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Wind energy, as an important clean and renewable energy source, has been gaining popularity over the past decades. The cumulative installed capacity of wind power in China reached 282 GW in 2020, ranked first in the world. The China Wind Energy Development Roadmap aims to achieve a wind power installed capacity of 1,000 GW by 2050, which will contribute 17% of the total national power consumption. Research and development on large-scale onshore/offshore wind turbines (WTs) is recognized as a major challenging task to satisfy the rapidly growing demand for wind power. The increasing size or slenderness of WTs reduces their stiffness and frequency, make them exhibit apparent nonlinear behavior, and render them vulnerable to unsteady aerodynamic excitations. However, investigations on nonlinear vibrations of large-scale WTs has remained limited to date. The project team investigated wind-induced nonlinear vibrations of large-scale WTs through a combination of analytical, numerical and experimental studies. The complex mechanism of the nonlinear vibrations (including self-excitation and energy transfer through internal resonance) and the corresponding vibration mitigation strategies for large-scale WTs were systematically investigated in this project. The outcome of this project will provide useful knowledge to the research and development of next-generation super-large-scale WTs.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

Only journal publications from HK PI are listed here.

The L	atest Status	of Public	ations	Author(s)	Title and Journal/	Submitted	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(Book	to RGC	to this	the support of	from the
publication	-	Review	Preparation	belonging to the	(with the volume,	•	-	this Joint	institutiona
	(For paper		(.• T)	project teams and		the year		Research	l repository
	accepted but not yet		(optional)	denote the corresponding	necessary publishing details specified)	ending of the	NO)	Scheme (Yes or No)	(Yes or No)
	published)			author with an	aeiaiis specijiea)	relevant		(103 01 100)	
	puonsneu)			asterisk*)		progress			
						report)			
			Yes	Zhang J, Yuan	Seismic analysis		No	Yes	
				GK, Zhu S*,	of 10-MW				
				Gu Q, Ke S,	offshore wind				
				Pei AG	turbine with				
					large-diameter				
					monopile in				
					consideration of				
					seabed				
					liquefaction.				
		Yes		Zuo H and	Development of		No	Yes	
		103		Zhu S*	novel track		110	103	
					nonlinear energy				
					sinks for seismic				
					performance				
					1				
					improvement of				
					offshore wind				
					turbine towers.				
					Mechanical				
					System and				
					Signal				
					Processing.				
		Yes			Wind- and sea		No	Yes	
					wave-induced				
				Zhu S*	response				
					mitigations of				
					offshore wind				
					turbines using				
					track nonlinear				
					energy sinks.				
					Structural				
					Control and				
					Health				
					Monitoring.				

2022	Cai Q and	The nexus	Yes	Yes	
2022	Zhu S*	between	105	105	
	Ziiu S	vibration-based			
		energy			
		harvesting and			
		structural			
		vibration control:			
		A comprehensive			
		review.			
		Renewable and			
		Sustainable			
		Energy Reviews			
2021	Zhang J, Zuo	The effect of	Yes	Yes	
2021	H, Yuan G,	wake flows on	1 05	1 05	
	Zhu S *	the output power			
		and fatigue			
		behavior of wind			
		turbines. ACTA			
		AERODYNAMI			
		CA SINICA. (in			
		Chinese)			
2021	Wang B and	Cyclic behavior	 Yes	Yes	
2021	Zhu S*	of iron-based	1 05	1 05	
	Ziiu S	shape memory			
		alloy bars for			
		high-performanc			
		e seismic			
		devices.			
		Engineering			
		Structures.			
2021	Wang H, Sher		 Yes	Yes	
2021	W*, Zhu H,	seismic analysis	1 03	105	
	Kong F, Zhu	of base-isolated			
	S	structures			
	5	with			
		electromagnetic			
		inertial mass			
		dampers			
		considering			
		different soil			
		conditions.			
		Bulletin of			
		Earthquake			
		Engineering.			
l	I	Engineering.			1

2021	W II CI		X 7	X 7	
2021	Wang H, Shen		Yes	Yes	
	W*, Li Y,	behavior and			
	Zhu H, Zhu S				
		performance of			
		base-isolated			
		structures with			
		electromagnetic			
		inertial mass			
		dampers:			
		Analytical			
		solutions			
		and simulations.			
		Engineering			
		Structures.			
2021	Cai Q and	Applying	Yes	Yes	
	Zhu S*	double-mass			
		pendulum			
		oscillator with			
		tunable ultra-low			
		frequency in			
		wave energy			
		converters.			
		Applied Energy.			
2021	Wang B Zhu	Cyclic behavior	Yes	Yes	
2021		and deformation	105	105	
		mechanism of			
	H	superelastic			
	11	SMA			
		U-shaped			
		dampers under			
		in-plane			
		and out-of-plane			
		loadings. Smart			
		Materials and			
		Structures.			
2021	Li JY and	Tunable	Yes	Yes	
2021	Zhu S*	electromagnetic	1 05	1 05	
		damper with			
		synthetic			
		impedance and			
		self-powered			
		functions.			
		Mechanical			
		Systems and			
		Signal			
		Processing.			

	 			1	1		
2020		Cai Q, Zhu	Can we unify		Yes	Yes	
		S* and Ke ST	vibration control				
			and				
			energy				
			harvesting				
			objectives in				
			energy				
			regenerative				
			tuned mass				
			dampers? Smart				
			Materials and				
			Structures.				
2020		Wang P. 7hu	Development of		Yes	Yes	
2020		S*, Chen K,			105	105	
			superelastic				
		Huang J	SMA angles as				
			seismic-resistant				
			self-centering				
			Devices.				
			Engineering				
			Structures.				
2020			Experimental		Yes	Yes	
		S*, Casciati F	Study of Novel				
			Self-Centering				
			Seismic Base				
			Isolators				
			Incorporating				
			Superelastic				
			Shape Memory				
			Alloys. Journal				
			of Structural				
			Engineering.				
2020		Wang H, Ke	Typhoon-induce		Yes	Yes	
2020		ST*, Wang	d vibration		105	105	
			respone and the				
			working				
			mechanism of				
			large wind				
			turbine				
			considering				
			multi-stage				
			effects.				
			Renewable				
	 		Energy.				
2020		Cai QL and	Unified strategy	2019	No	Yes	
		Zhu S*	for overall				
			impedance				
			optimization in				
			vibration-based				
		1	electromagnetic				
		1	energy				
			harvesters.				
			International				
		1	Journal of				
		1	Mechanical				
			Sciences. 165:				
			105198.				
			103170.				

2019	Cai QL a		2019	No	Yes	
	Zhu S*	performance of				
		electromagnetic				
		damper cum				
		energy harvester				
		using				
		microcontroller:				
		concept and				
		experimental				
		validation.				
		Mechanical				
		Systems and				
		Signal				
		Processing. 134:				
		106339.				
2019	Li JY, ZI	nu S* Enhance the	2019	No	Yes	
	and Shen					
		of eddy current				
		and				
		electromagnetic				
		dampers. Smart				
		Structures and				
		Systems, 24(1):				
		15-26.				
2019	Shen W,	Zhu Unify energy	2019	No	Yes	
		hu H harvesting and				
		vibration control				
		functions in				
		randomly excited	l			
		structures with				
		electromagnetic				
		devices. ASCE				
		Journal of				
		Engineering				
		Mechanics.				
		145(1):				
		04018115.				
2018	Zhu S*,		2019	No	Yes	
	Z and Ke					
		and structural				
		health				
		monitoring				
		techniques for				
		offshore wind				
		turbines.				
		Southern Energy				
		Construction.				
		5(2): 47-59. (in				

2018		Li C, Xiao Y,	Optimization of	2019	No	Yes	
		Xu YL, Peng	blade pitch in				
		YX, Hu G and	H-rotor vertical				
		Zhu S*	axis wind				
			turbines through				
			computational				
			fluid dynamics				
			simulations.				
			Applied Energy.				
			212: 1107-1125.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title		to this report (<i>Yes or No)</i>	Research	

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	C	Date of thesis submission/ graduation

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Patent:

Zhu S and Cai Q "A tunable low-frequency wave energy converter". China Model Utility Patent No.: CN212583871U, Grant Date: 23 February 2021.

Keynote Lecture:

- Novel electromagnetism-based structural vibration control devices and strategies. The 8th National Conference on Structural Control and Health Monitoring (SVCHM8). Hefei, China. Nov 22-24, 2019.
- Self-powered active vibration control of structures. The 2021 5th International Conference on Civil, Architectural and Structural Engineering (ICCASE 2021). Zhangjiajie, China. April 23-25, 2021.

- The Nexus between Structural Vibration Control and Energy Harvesting Techniques. The Ninth Kwang-Hua Forum Innovations and Implementations in Earthquake Engineering Research: Engineering Resilience. Shanghai, China. December 10-12, 2021.
- **12. Statistics on Research Outputs** (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed journal publications	Conference papers	Scholarly books, monographs and chapters	Patents awarded	Other research outputs (Please specify)
No. of outputs arising directly from this research project [or conference]	15 (HK) 22 (Mainland) 3 (Joint)	6 (Mainland)	0	1 (HK) 18 (Mainland)	0