The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Microengineering Organic Semiconductor Materials for Flexible OTFT Devices

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal Investigator (<i>with title</i>)	Prof. Aping ZHANG	Prof Qingdong ZHENG
Post	Professor	Professor
Unit / Department / Institution	Department of Electrical Engineering / The Hong Kong Polytechnic University	Fujian Institute of Research on the Structure of Matter / Chinese Academy of Sciences
Contact Information	azhang@polyu.edu.hk	qingdongzheng@fjirsm.ac.cn
Co-investigator(s) (with title and institution)	Dr Yang CHAI The Hong Kong Polytechnic University	Dr Shanci CHEN Fujian Institute of Research on the Structure of Matter / Chinese Academy of Sciences

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 January 2016		
Project Completion date	31 December 2019		
Duration (in month)	48	N.A.	
Deadline for Submission of Completion Report	31 December 2020		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1) Develop new organic semiconductor materials for high-performance field-effect transistors;
 - 2) Develop new maskless lithography technology for patterning organic semiconductor materials;
 - 3) Develop large-area high-performance flexible tactile sensors based on high-density OFET array.
- 5.2 Revised Objectives

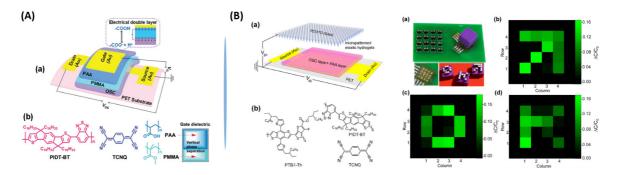
N.A.

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

The major research findings and outcomes of the project include:

I. Two kinds of new organic semiconductor materials with good optoelectronic properties have been developed.


Our collaboration partner has successfully developed two asymmetric-indenothiophenebased organic semiconductors (PITBT and PITFBT). Both organic semiconductors (or copolymers) exhibit good solubility in common organic solvents such as chloroform, toluene, and chlorobenzene. Thermogravimetric analysis indicates that both copolymers are stable up to 360 °C. Charge transporting properties of these novel semiconductors have been investigated by using bottom-gate OFET structure. Both copolymers exhibit typical *p*-type semiconductor characteristics. For PITBT, its hole mobility of OFETs is measured to be $7.42 \times$ 10^{-4} cm² V⁻¹ s⁻¹. By contrast, the OFETs based on PITFBT show a greatly enhanced hole mobility of 2.53×10^{-3} cm² V⁻¹ s⁻¹ and a much higher on/off current ratio.

II. New optical maskless lithography technology has been developed for microengineering functional organic materials.

With the recently developed digital light processing technology, we have successfully established an optical maskless lithography technology, see Fig. 1(A), to microengineer organic semiconductor and functional polymer materials for fabrication of OTFT devices and sensors. The developed maskless lithography showed great flexibility in microengineering of different kinds of organic materials for 2D or even 3D microstructures. Our researches have demonstrated that such a maskless lithography technology can not only flexibly microengineer various kinds of functional organic materials, such as elastic conductive hydrogel (see the **Paper-2**) and elastic ionic hydrogel (see **Paper-3**), for OTFT sensors and devices, but also directly print the micropatterns of silver nanoparticles (see **Paper-4**) and 3D microstructures of polytetrafluoroethylene (see **Paper-5**).

III. High-performance flexible OTFT-based tactile sensors have been developed for wearable applications.

With the developed organic semiconductor materials and maskless lithography technology, we have designed and fabricated several kinds of high-performance flexible OFET-based tactile sensors. High-performance flexible OFET pressure sensors based on a novel gradient PMMA/PAA dielectric have been fabricated for pressure sensing (see Fig.2A & Paper-1). Notably, micropatterned elastic ionic polyacrylamide hydrogel can render OFET sensors not only extremely high sensitivity but also very low operation power for low-pressure mapping (see Fig.2B & Paper-3).

Fig. 2. (A) High-performance flexible OFET pressure sensors with a novel gradient PMMA/PAA dielectric. (B) OFET tactile sensors with micropatterned elastic ionic polyacrylamide hydrogel.

These research outcomes have been published in top international journals, such as *Advanced Science* (*IF: 12.4*) and *Nano Energy* (*IF: 12.4*). The work published in *Advanced Materials Technology* (*IF: 5.969*) was highlighted on *Back Cover* and featured by *Materials Views China* (see more details in Part C).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The developed organic semiconductor materials showed good electronic and optoelectronic properties and thus can be used to develop not only high-performance flexible organic thin-film transistor tactile sensors but also flexible optoelectronic devices, such as organic solar cells, while the developed optical maskless lithography technology exhibited great flexibility in microengineering various kinds of organic materials toward 2D and even 3D microstructures.

Further research may bridge the developments on new materials and advanced microfabrication technologies to develop new kinds of flexible electronic/optoelectronic devices such as wearable sensors, organic solar cells, organic light-emitting diodes, large-area rollable displays, etc.

Notably, our fabricated flexible capacitive OTFT pressure sensor with microengineered elastic ionic polyacrylamide hydrogel has not only extremely high sensitivity (i.e. 17.95 kPa⁻¹) but also very low operation voltage (i.e. 2 V) where are thus very promising for a myriad of E-skin applications ranging from tactile sensors to personalized healthcare devices.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Flexible electronic devices have attracted remarkable attention due to their enormous promise in wearable electronics and personalized healthcare applications. In particular, organic thin-film transistors (OTFTs) have shown their great potential due to not only good physical and mechanical properties but also excellent performances in terms of field-effect mobility and on-off ratio.

This project aims to collaborate with the partner in mainland to develop both new organic semiconductor materials and optical microfabrication technology so as to microengineer organic materials for the development of high-performance flexible OTFT sensors and devices.

During the period of the project, the collaborative research team has successfully developed two kinds of new organic semiconductor materials. Both of them exhibit good microelectronic and optoelectronic property and can be used to fabricate high-performance flexible electronic devices. A new optical maskless lithography technology has also been successfully developed by using high-speed UV-grade spatial light-modulator. It can rapidly micropattern various kinds of organic materials toward 2D and even 3D microstructures.

High-performance OTFT tactile sensors with the advantages of both extremely high sensitivity and very low operation voltage have been fabricated for highly sensitive pressure sensing and mapping, which demonstrated the great promise of OTFTs for E-skin and personalized healthcare applications.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The I	Latest Status	of Public	ations	Author(s)	Title and Journal/	Submitted	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Book	to RGC			from the
	Acceptance		Preparation		(with the volume,	(indicate		of this Joint	institutional
-	(For paper		-	belonging to	pages and other	the year		Research	repository
	accepted		(optional)	the project	necessary	ending of		Scheme	(Yes or No)
	but not yet			teams and	publishing details	the		(Yes or No)	
	published)			denote the	specified)	relevant			
				corresponding		progress			
				author with an asterisk*)		report)			
				Z. Yin,	"Solution-proc	No	Yes	Yes	Yes
2018				MJ. Yin,	essed bilayer	(Submitte	105	105	105
2018	-	-	-	,	2	d the draft			
				Z. Liu, Y.	dielectrics for	for review,			
(Paper-1)				Zhang, A.	flexible	but not the			
				P. Zhang*,	low-voltage	finally			
				and Q.	organic	published			
				Zheng*,	field-effect	version)			
				_	transistors in				
					pressure				
					sensing				
					applications,"				
					Advanced				
					Science, Vol.				
					5, p.1701041,				
					2018.				
				MI	(<i>IF: 12.4</i>)	Ma			
2010				MJ.	"Micropatterne	(Submitte	Yes	Yes	Yes
2018	-	-	-	Yin, Y.	d elastic	d the draft	res	res	res
				Zhang,	gold-nanowire/	for review.			
(Paper-2)				Z. Yin, Q.	polyacrylamid	but not the			
				Zheng,	e composite	finally			
				and A. P.	hydrogels for	published			
				Zhang*	wearable	version)			
					pressure				
					sensors," Adva				
					nced Materials				
					Technologies,				
					Vol. 3, p.				
					1800051,				
					2018.				
					(<i>IF</i> : 5.969;				
					highlighted on				
					the <i>Back Cover</i> ;				
					featured by				
					Materials Views				
					China)				
					cmmu)				I

			MJ.	"Micropattern				
2019 -				ed elastic ionic	No	Yes	Yes	Yes
2019 -	-	-			INU	105	105	105
			Y.	polyacrylamid				
(Paper-3)			Zhang, Q .	e hydrogel for				
			Zheng*,	low-voltage				
			and A. P.	capacitive and				
			Zhang*	organic				
				thin-film				
				transistor				
				pressure				
				sensors,"				
				Nano Energy,				
				Vol. 58, pp.				
				96-104, 2019.				
				(<i>IF: 13.1</i>)				
			Y.	"Ultrafast				
2018 -	_	_	Zhang, Q.		No	Yes	Yes	Yes
2010 -			Zhang, Q. Zhang,	d growth of	10	1 05	105	105
(Paper-4)			X. Ouyang,	silver				
(raper-4)			D. Y.	nanoparticles				
			Lei, A. P.	for direct				
			Zhang*,	plasmonic				
			and HY.	color				
			Tam	printing,"				
				ACS Nano,				
				Vol. 12,				
				pp.9913-9921,				
				2018. (IF: 13.7;				
				press reported				
				by <i>eeNews</i>				
				Europe)				
			Y. Zhang,	"3D μ-printing				
2020 -	-	-	MJ. Yin,	of	No	Yes	Yes	Yes
			X. Ouyang,	polytetrafluoro				
(Paper-5)			A. P.	ethylene				
			Zhang*,	microstructure				
			and HY.	s: a route to				
			Tam	superhydropho				
				bic surfaces				
				and				
				devices," Appli				
				ed Materials				
				Today, Vol. 19				
				, p.100580,				
				2020. (IF: 8.01)				
		1						

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title		Submitted to RGC (indicate the year ending of the relevant progress	to this report <i>(Yes or No)</i>	this Joint Research	Accessible from the institutional repository (Yes or No)
Belfast,	polytetrafluoroe thylene (PTFE)	The 31st IEEE	report) Yes (2018)	No	Yes	Yes

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for		Date of thesis submission/ graduation
Feng XIONG	MPhil	11 May 2016	25 April 2019

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Nil.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	F	Peer-reviewed	(Conference	Scholarly books,	Patents awarded	Other research
		journal		papers	monographs and		outputs
		publications			chapters		(Please specify)
No. of outputs	5		1		0	0	0
arising directly							
from this research							
project [or							
conference]							