RGC Ref.: N_PolyU517/14 NSFC Ref. : 11461161009

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Photovoltaic, Spin Field Effect Transistor and Sensing Devices Based on Polar Oxide Heterostructural Two-dimensional Electron Gas

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Professor Jiyan DAI	Professor Changgan ZENG
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of Applied	Department of Physics /
Institution	Physics / The Hong Kong	University of Science and
	Polytechnic University	Technology of China
Contact Information	Jiyan.dai@polyu.edu.hk	cgzeng@ustc.edu.cn
Co-investigator(s)	Professor YAN Feng /	Prof. Zhang Zhenyu
(with title and	The Hong Kong Polytechnic	University of Science and
institution)	University	Technology of China

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1-Jan-2015	N/A	N/A
Project Completion date	31-Dec-2018	N/A	N/A
Duration (in month)	48	N/A	N/A
Deadline for Submission of Completion Report	31-Dec-2019	N/A	N/A

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- 1) To investigate the transport properties in various orientated interfaces of polar/non-polar oxides, so as to achieve deeper understanding on the formation of 2DEG at heterostructure interface;
- 2) To achieve giant photovoltaic effect in polar/non-polar oxides heterostructural 2DEG in order to realize energy harvesting;
- 3) To investigate spin injection and transportation in polar/non-polar oxides heterostructural 2DEG, so as to fabricate spin polarized field effect device and understand related spintronic physics;
- 4) To explore new sensing phenomena based on the field effect device with such heterostructure 2DEG, so as to achieve deeper understanding of the sensing mechanism.
- 5.2 Revised Objectives N.A.

Date of approval from the RGC: _____

Reasons for the change:	
0	

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

A study about modulating the electrical transport in the 2DEG at LAO/STO heterostructures by interfacial flexoelectricity was conducted. Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential application in electronic devices. Here we find that a mechanical bending induced flexoelectricity significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas at the LAO/STO heterostructure. Under variant bending states, both the carrier density and mobility of the 2DEG are changed according to the flexoelectric polarization direction, showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These results were published in Physical Review Letter (see Part C and attached paper).

The dynamic modulation of the transport properties of the LAO/STO interface using uniaxial strain was investigated. Among the interfacial transport modulations to the LaAlO₃/SrTiO₃ (LAO/STO) heterostructure, mechanical strain has been proven to be an effective approach by growing the LAO/STO films on different substrates with varying lattice mismatches to STO. However, this lattice-mismatch-induced strain effect is static and biaxial, hindering the study of the strain effect in a dynamic way. In this work we realize dynamic and uniaxial strain to the LAO/STO oxide heterostructure at low temperature, through mechanical coupling from a magnetostrictive template. This anisotropic strain results in symmetry breaking at the interface and induces further splitting of the electronic band structure and therefore produces different conductivities along the x and y in-plane directions. This approach of strain engineering provides another degree of freedom for control of transport properties of oxide heterostructures and opens an additional way to investigate strain effects in materials science. There results were published in Physical Review B (see Part C and attached paper).

We also carried out research on the LAO/STO heterostructure for light and gas sensing applications. The main difficulty to apply this 2DEG system in electronic devices is its relatively low response to external stimulus such as light and gas (since gas cannot react and be absorbed onto the heterostructure). We successfully invented a method to modify the surface of the LAO/STO heterostructure and significantly enhance the response to ultraviolet light and gases, therefore, made this fascinating 2DEG system close to real application in sensing devices. Palladium (Pd) nanoparticles (NP) have been successfully grown on the LAO/STO structure. The Pd NP-decorated LAO/STO heterostructure exhibits a giant photo-response in the ultraviolet (UV) range. The conductance of the interface increases under the irradiation of UV light and a giant optical switching effect with a photoconductivity on/off ratio as high as 750% has been achieved at room temperature. Besides the UV light sensing, the Pd NP-decorated LAO/STO heterostructure has also been found to be very sensitive to hydrogen gas down to ~2ppm in concentration, demonstrating the highly-sensitive and room-temperature workable gas sensing properties. Cross sensitivity tests indicate that the sensor shows response to ethanol, acetone and water gas vapor. These works are still going on and will be published later.

The work of spin FET and photovoltaic were extensively studied by our Mainland collaborator. Please see attach report of our collaborator.

Potential for further development of the research and the proposed course of action (*maximum half a page*)

Inspired by the rich physical properties of the LAO/STO heterostructure such as 2D superconductivity, flexoelectricity and strain modulated resistance, in this project, we also extent our research work on other oxide thin film heterostructures. Efforts we and our collaborators made includes studies on plasma-enhanced pulsed-laser deposition of ferroelectric-induced resistive switching in ultrathin (Ba,Sr)TiO₃ tunnel junctions due to strain modulation and self-electroforming and high-performance complementary memristor based on ferroelectric tunnel junctions. Results have been published in two journal papers in Applied Physics Letters (see Part C and attached paper).

The two-dimensional electron gas system of this oxide heterostructure is a model system. More applications and physics beyond deserve to be further studied.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Under the financial support from this joint fund program, extensive and comprehensive research works were conducted to study the complex oxide heterostructural two dimensional electron gas (2DEG) system, ranging from investigations on fundamental physical origin of the conductive nature at the LaAlO₃/SrTiO₃ (LAO/STO) heterostructure interface to demonstrations of effective modulation methods on its interfacial electrical transport properties and application designing as oxide electronic devices like strain sensors, light sensors and gas sensors. Based on the results of this project, four journal papers were published, including one published on *Physical Review Letters* and selected as *Editors' Suggestion* and featured in the *Physics* magazine.

These results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more research on the oxide interfacial flexoelectricity may be stimulated. The concept of coupling between flexoelectricity and novel electrical properties of ultra-thin oxide films, such concept might be useful in future energy-harvesting devices or mechanical sensors.

The two-dimensional electron gas system of this LaAlO₃/SrTiO₃ oxide heterostructure is a model system. More applications and physics beyond deserve to be further studied.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge *RGC's funding support by quoting the specific grant reference.*)

The L	The Latest Status of Publications		Author(s)	Title and Journal/	Submi	Attached	Acknowledge	Accessible	
Year of	Year of	Under	Under	(bold the	Book	tted to		d the support	from the
publication	Acceptance	Revie	Preparatio		(with the volume,				institutional
	(For paper	w	n	0 0	pages and other		,	Research	repository
	accepted but			project teams	necessary publishing	te the			(Yes or No)
	not yet		(optional)	and denote the	details specified)	year		(Yes or No)	
	published)			corresponding author with an		ending of the			
				asterisk*)		oj ine releva			
				usierisk j		nt			
						progre			
						ss			
						report)			
				Fang Zhang,	Dynamic		yes	yes	yes
2016				Yue-Wen	modulation of the				
				Fang, Ngai	transport				
				Yui Chan,	properties of the				
				Wing Chong	LaAlO3/SrTiO3				
				Lo, Dan Feng	interface using				
				Li,	uniaxial strain				
				Chun-Gang	PHYSICAL				
				Duan, Feng	REVIEW B 93,				
				Ding, Ji Yan	214427 (2016)				
				Dai*	. ,				

2016	Z. B. Yan, H. Self-electro M. Yau, Z. g and high- W. Li, X. S. performanc Gao, J. Y. complemer Dai*, and JM. Liu* on ferroelect tunnel junc Appl. Phys 109, 05350	e ttary based ctric tions . Lett.	yes	yes
2018	Hei-ManFerroelectr. ced resistiv ZhongnanXi, Xinxinswitching ir ultrathin Chen,CheukChen,Cheuk(Ba,Sr)TiO Ho Chan, tunnel junc Zheng Wen, and Ji-YanDai*APPLIED PHYSICS LETTERS 042905	e n 3 tions n,	yes	yes
2019	Fan Zhang, Peng Lv, YitengModulating Electrical YitengYitengTransport in Zhang, ShujinShujinElectron Ga Huang, LaAlO3/Sr Chi-ManHei-ManHeterostruct Wong, by Interfaci Hei-ManYau, 1 Xinxin 	n the nsional as at TiO3 ctures al icity.	yes	yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)		this Joint Research	Accessible from the institutional repository (Yes or No)
2017/07	Giant Electroresistanc e Nonvolatile	2017 Conference for Atomic force microscopy and advanced functional materials	No	Yes	Yes	No
2016/12	Low-field Switching Four-state Nonvolatile Memory Based on Multiferroic Tunnel Junctions	International Conference on ICTAM	No	Yes	Yes	No

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	6	Date of thesis submission/ graduation
Yua Hei MN	PhD	01/09/2014	31/08/2018

11. Other impact (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.) NIL