NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Investigation of Heat and Mass Transfer Mechanisms in a Novel Total Heat Exchanger

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Professor NIU, Jianlei	Professor ZHANG, Lizhi
Investigator (with title)		
Post	Chair Professor of Building	Professor
	Environment and Energy	
Unit / Department /	BSE	Key Lab of Enhanced Heat
Institution		Transfer and Energy
		Conservation / South China
		University of Technology
Co-investigator(s)	Dr. XIAO, Fu	Dr PEI, Li-xia
(with title)		

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	01/01/2012		
Project Completion date	31/12/2014		
Duration (in month)	36		18-NOV-2011

(Revised 07/09)

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To set up the heat and mass transfer model in a one-step fabricated asymmetric vapor permeable membrane (made from Cellulose Acetate) using the fractal theory and experiments. To intensify moisture transfer through the novel membrane by revealing the relations between its thermo-physical properties, interface characteristics, micro and meso structures and its heat and moisture transfer properties.
 - 2. To establish friction and transport correlations in cross-corrugated triangular channels under transition flow conditions. To build mathematical models that govern the fluid flow and heat mass transfer in the structure, and find the ways to intensify its convective heat and mass transfer.
 - 3. To build the conjugate heat and mass transfer model of the novel total heat exchanger combining the membrane with the structure. To find the ways to intensify its heat and moisture transfer, and to achieve a sensible effectiveness of 0.8 and a latent effectiveness of 0.70 at pressure head loss comparable to current designs.

5.2 Revised Objectives

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

The major finding and outcomes can be summarized in two aspects. The first one is the new chemical engineering process, by which a membrane with high moisture permeation coefficient can be prepared using a one-step approach. The membrane is porous and asymmetric, exhibiting the highly desired properties for the total heat exchanger in building applications to save ventilation energy (Li et al 2015).

The 2^{nd} research outcome is about the assembly of the membrane as one single device/equipment used in the air-conditioning system. A balance between three conflicting demands must be considered: the energy recovered, the increased system fan energy use to overcome the pressure loss, and the material cost and space use, which is an optimization problem. Physical and mathematical models have been proposed and evaluated, firstly under the duct geometry and the flow regime where analytical and experimental correlations are available (Liu and Niu 2014). It is shown that the classical *j* and *f* factors are not good indicators for comparing the performance, and a new optimization procedure is proposed and demonstrated. For complicated airflow duct cross sections, computational fluid dynamics methods were demonstrated (Liu and Niu 2015).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

For different climates, the available indoor- outdoor temperature and moisture differences are different. Therefore, a climate adaptive optimization of the total heat recovery unit will be required. A generic optimization criterion needs to be established, which can guide the development of more efficient membranes using other emerging new materials such as Graphene.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

To save energy in air-conditioned or heated buildings, a so called total heat exchanger (THE), which enables both heat and moisture recovery from the exhaust air, is a technology option. In this project, two technical issues are addressed. The first one is to develop a technique to produce the one-step fabricated asymmetric vapor permeable membrane, which is the core component of a THE and is made from Cellulose Acetate; the 2^{nd} technology is the optimization of the assembly of such membranes in a novel cross-corrugated triangular duct structure in comparison with traditional regular ducts.

The best ingredients for membrane making are found to be K2SO4 (5wt.%) /PEG-2000 (1wt.%). Then numerical modeling analysis is undertaken to find the optimal assembly of the membranes, which involves both the conductive heat and diffuse moisture transfer in porous membranes and the flow and convection transfer in cross-corrugated ducts. A

(Revised 07/09)

new method for the optimal design of THE is proposed, which considers pressure loss, energy recovered, material use and space requirement, respectively considering laminar and turbulent flow conditions. The scientific findings from this project are reported in 20 SCI papers published. Five patents were granted. One monograph book in was published.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising directly from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.))

The Late	est Status of	Publicat	ions	Author(s)	Title and Journal/Book	Submitted	Attached	Acknowledg
Year of	Year of	Under	Unde	(bold the authors	(with the volume, pages	to RGC	to this	ed the
publication	Acceptance	Review	r	belonging to the	and other necessary	(indicate	report	support of
	(For paper		Prep	project teams and	publishing details	the year	(Yes or	this Joint
	accepted		arati	denote the	specified)	ending of	No)	Research
	but not yet		on	corresponding		the relevant		Scheme
	published)			author with an		progress		(Yes or No)
			(opti	asterisk*)		report)		(105 01 110)
			onal)					
				Li, Zhen-Xing;	Conjugate heat and mass			
2015				Zhong, TS; Niu,	transfer in a total heat			
				JL; Xiao, Fu;	exchanger with	No	Yes	Yes
				Zhang, LZ*	cross-corrugated			
					triangular ducts and			
					one-step made			
					asymmetric memoranes,			
					International Journal Of			
					Transfor Volume: 84			
					P_{ages} : 300 400			
					Published: MAV 2015			
				I in Visoning.	Effects of geometrical			
2015				Nin Tion loi*	parameters on the			
2013				Niu Jian-iei*	thermohydraulic	NT	N 7	V
					characteristics of periodic	NO	Y es	Yes
					cross-corrugated channels,			
					International Journal Of			
					Volume: 84 Pages:			
					542-549 Published			
					MAY 2015			
2014				Liu Xiaoping:	An optimal design analysis	No	Yes	Yes
				Niu Jian-lei*	method for heat recovery			
					devices in building			
					applications, APPLIED			
					Pages: $364-372$			
					Published: SEP 15 2014			

9. Recognized International conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper*)

(Revised 07/09)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged
Place			to RGC	to this	the support of
			(indicate the	report	this Joint
			year ending	(Yes or No)	Research
			of the		Scheme
			relevant		(Yes or No)
			progress		
			report)		
July/2014/	Evaluation Of Turbulence	ISIAQ flagship			
Hong Kong	Models For Simulating Flow	International			
	And Heat Transfer In	conference - Indoor	No	Yes	Yes
	Cross-Corrugated Triangular	Air 2014, Hong Kong,			
	Channels	July 6-12, 2014			
July/2014/	An Optimal Design Analysis	ISIAQ flagship			
Hong Kong	Method For Heat Recovery	International			
	Heat Exchangers In	conference - Indoor	No	Yes	Yes
	Building Applications	Air 2014, Hong Kong,			
		July 6-12, 2014			

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

An MEng graduate from PolyU is undertaking PhD study in Norway, extending the study to the application of the membrane-based heat recovery unit to frosty, cold climates.