The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme <u>Joint Completion Report</u>

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

The Application of Organic Electrochemical Transistors as a State-of-the-art Platform for Label-free, Ultrasensitive, High Throughput and Portable Nucleic Acid Detection

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Feng YAN	Prof. Huangxian Ju
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of Applied Physics	State Key Laboratory of
Institution	/ The Hong Kong Polytechnic	Analytical Chemistry and Life
	University	Science / Department of
		Chemistry / Nanjing
		University
Contact Information	+852 2766 4054	+86 25 83593593
Co-investigator(s)	N.A.	Dr. Jie Wu
(with title and		Department of Chemistry,
institution)		Nanjing University

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01-Jan-2014		
Project Completion date	31-Dec-2017		
Duration (in month)	48		
Deadline for Submission of Completion Report	09-Feb-2018		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. OECT-based ultrasensitive detection of nucleic acid to attomolar level
 - 2. Ultrasensitive real-time detection of MicroRNA
 - 3. Fabrication of OECT arrays for high throughput label-free nucleic acid sensing
- 5.2 Revised Objectives N.A.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

- 1. We find that OECT is an excellent transducer for the detection of biomolecules with high sensitivity. The device can be easily prepared by solution process with low cost. By modifying the devices with different biomaterials, the OECT-based biosensors show high sensitivity as well as high selectivity (Adv. Mater. 27, 676-681 (2015).).
- 2. The device is successfully used to detect various biomarkers with ultrahigh sensitivity. In the devices, we proposed a new sending mechanism of the devices based on the modulation of the electrochemical activity of the gate electrode (Adv. Mater. 29, 1703787 (2017)). The concentration of the analyte can influence the concentration of the nano-probes modified on the gate electrode and induce a different device response (ACS Appl. Mater. Interface (submitted)). Based on this principle, highly sensitive miRNA sensors have been realized and an ultralow detection limit down to 10⁻¹⁵ M was obtained (Paper in preparation).
- 3. We found the interaction between biomolecules and the organic channel of an OECT for the first time (Adv. Mater. 27, 7493-7527 (2015); One paper is in preparation). The bulk capacitance of the organic semiconductor layer in aqueous solution was changed when negatively charged miRNA was immobilized on the surface, which leads to the change of the channel current of an OECT. So the device can be conveniently used to detect miRNA and other biomolecules without labeling.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

OECTs can be developed as low-cost and highly sensitive biosensors for many medical applications. The possible practical applications include: (1) The devices for the detection of miRNA can be used for the diagnosis of diseases such as cancer. (2)Due to the low cost and portable characters, the devices can also be used for healthcare purposes, such as the monitoring of glucose and uric acid levels for elderly. (3) The devices can be further developed for the detection of many other biomarkers based on the same principle and thus multifunctional sensing arrays can be prepared for many real applications. (4) The mechanism of the interaction between biomolecules and organic semiconductors is still not

very clear. Fundamental study is needed to provide a better understanding of the observed results.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Micro RNAs (miRNAs) are small RNA molecules that regulate gene expression post-transcriptionally. They play an important role in cancer development and therefore have become next-generation biomarkers for the diagnosis and prognosis of cancers. We have fabricated organic electrochemical transistors and used a dual-functionalized nanoprobe for ultra-sensitive analysis of cancer inhibitor miRNA. A dual-functionalized nanoprobe was also prepared for generating electrochemical signal and as amplification section. The device combined with this nanoprobe could specifically detect miRNA level down to 10⁻¹⁵ M, which is about three orders magnitude lower than conventional electrochemical methods using the same functionalized working electrode. Moreover, this device has been used for the practical sensing of miRNA expression levels in cancer cells, normal cells and anticancer drug treated cancer cells and can differentiate them easily. Microarrays of the OECTs were successfully prepared and used for multifunctional biological detections. Therefore, the OECT devices functionalized with labeled nanoprobes demonstrate great potential for the real detection of human mRNA in cancer cells in physiological environments. The success of the research project leads to a cost-effective approach to detecting various biomarkers with ultrahigh sensitivity and pave a way of using novel organic semiconductor devices with low cost in biological systems.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status o	f Publicat	ions	Author(s)	Title and Journal/	Submitted	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(bold the	Book	to RGC	to this	the support of	from the
publication	Acceptance	Review	Preparation		(with the volume,	(indicate	report	this Joint	institutional
	(For paper			belonging to	pages and other	the year	(Yes or	Research Scheme	repository (Yes or
	accepted but		(optional)	the project		ending of	No)	(Yes or No)	No)
	not yet			teams and denote the	details specified)	the relevant progress		(105 07 110)	(10)
	published)			correspondin		report)			
				g author with		report			
				an asterisk*)					
				Caizhi	Flexible Organic		Yes	Yes	Yes
2015				Liao,	Electrochemical				
				Chunhin	Transistors for				
				Mak,	Highly Selective				
				Meng	Enzyme				
				Zhang,	Biosensors and				
				Helen	Used for Saliva				
				L.W. Chan	Testing,				
				and Feng	Advanced				
				Yan*	Materials. 27,				
					676-681 (2015).				
2015				Caizhi	Flexible Organic		Yes	Yes	Yes
				Liao,	Electronics in				
				Meng	Biology:				
				Zhang,	Materials and				
				Mei Yu	Devices,				
				Yao, Tao	Advanced				
				Hua, Li	Materials. 27,				
				Li*, Feng	7493-7527				
				Yan*,	(2015).				
2015				Meng	Highly sensitive		Yes	Yes	Yes
				Zhang,	glucose sensors				
				Caizhi	based on				
				Liao, Chun	enzyme-modified				
				Hin Mak,	whole-graphene				
				Peng You,	solution-gated				
				Chee	transistors,				
				Leung Mak					
				& Feng	Reports. 5,				
				Yan*,	8311, 1-6 (2015).				

2015			Chun Hin	Highly-sensitive	Yes	Yes	Yes
2015			Mak,	epinephrine	105	103	1 03
			Caizhi	sensors based on			
			Liao, Ying				
			, U	electrochemical			
			Zhang,	transistors with			
				carbon			
			Tang, Y.	nanomaterials			
				modified gate			
			H.L.W.	electrodes,			
			Chan and	Journal of			
			Feng Yan*	Materials			
				Chemistry C. 3,			
				6532-6538			
				(2015).			
2017			Ying Fu,	Highly Sensitive	Yes	Yes	Yes
			Naixiang	Detection of			
			Wang,	Protein			
			Anneng	Biomarkers with			
			Yang,	Organic			
			Helen	Electrochemical			
			Ka-wai	Transistors,			
				Advanced			
			Li, Feng	Materials. 29,			
			Yan*,	1703787 (2017)			
2018	Under		Lizhen	Organic	Yes	Yes	Yes
	review		Chen,	electrochemical			
			Ying Fu,	transistors for the			
			Naixiang	detection of cell			
			Wang,	surfaces glycans,			
			Anneng	ACS Applied			
			Yang,	Materials &			
				Interfaces			
			Li, Jie	(Submitted on 31			
			Wu,	Jan 2018)			
			Huangxia				
			n Ju, Feng				
			Yan				
2018	I-	'n	Ying Fu,	Organic	 Abstract	Ves	Yes
2010			Naixiang	electrochemical	only	105	105
			Wang,	transistors for			
			Anneng	miRNA analysis			
			Anneng Yang,	and cancer cell			
			Yuanzhe	detection			
			Li, Feng				
			YAN				

2018	In	1	Kai Xie,	Heterogeneous	Abstract	Yes	Yes
	pr	preparation Nai	Naixiang	regulation along	only		
				the dopaminergic			
			Xudong	circuits revealed			
			Lin,	by in vivo			
			Peiling	real-time			
			Fang, Feng	mapping of			
			Yan*,	neurotransmitter			
			Peng Shi*	release using			
				organic			
				electrochemical			
				transistor arrays			

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
12/2015 /Boston, USA	Highly sensitive biosensors based on organic electrochemical transistors	2015 MRS Fall Meeting & Exhibit		Yes	Yes	Yes
07/2015 /	High performance biosensors based on solution-gated flexible transistors with functionalized gate electrodes	8th International Symposium on Flexible Organic Electronics (ISFOE15), Greece		Yes	Yes	Yes
2/2017	Organic thin film transistors for high-performan ce biosensors	International Conference on Display Technology (ICDT) 2017, Feb 18-20, 2017, Fuzhou, China.		Yes	Yes	Yes
4/2017	Solution-Gated Organic Thin-Film Transistors for High-Performan ce Biosensors	2017 MRS Spring Meeting, April 17-21, 2017, Phoenix, Arizona, USA.		Yes	Yes	Yes

Name	Degree registered for	Date of registration	Date of thesis submission/
			graduation
Caizhi Liao	MPhil	03-JUL-2012	24-JUL-2014/ graduation
Chun Hin Mak	MPhil	02-JUL-2013	19-NOV-2015/ graduation
Naixiang Wang	PhD	1-Sep-2015	31-Aug-2018

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

We have successful collaboration with Prof. Huangxian Ju's group in Nanjing University and have developed some novel biosensors (Submitted to ACS Appl. Mater. Interfaces.).