The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Sparse Optimization: Algorithms and Theories

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Xiaojun Chen	Prof. Ya-xiang Yuan
Investigator (with title)	5	6
Post	Head	Academician
Unit / Department /	Department of Applied	Academy of Mathematics and
Institution	Mathematics	Systems Science
	The Hong Kong Polytechnic	Chinese Academy of Sciences
	University	
Co-investigator(s)	Prof. Xiaoming Yuan	Dr. Xin Liu
(with title)		

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	1 January 2015		
Project Completion date	31 December 2018		
Duration (in month)	48		
Deadline for submission of Joint Completion Report	31 December 2019		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. Develop efficient splitting algorithms for non-smooth convex sparse optimization models in vector and matrix spaces.
 - 2. Develop efficient numerical algorithms for non-smooth non-convex (also might be non-Lipschitz) sparse optimization models in vector and matrix spaces.
 - 3. Investigate the global convergence and worst-case iteration complexity results for the new algorithms to be proposed.
 - 4. Apply the new algorithms to solve some applications arising in various areas such as information theory, image processing, statistical learning, etc.

NSFC/RGC 8 (Revised 01/18)

5.2 Revised Objectives

Date of approval from the RGC: <u>NA</u>

Reasons for the change: NA

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

The PIs and Co-PIs have developed efficient algorithms for non-smooth convex sparse matrix optimization problems. Such problems have many important applications in various areas such as information theory, image processing, statistical learning, etc.

We have published six papers in top/major journal. Two papers have been accepted for publication and one joint paper is under review.

In the first paper, we show that under certain conditions, the second order optimal necessary condition implies global optimality for a class of matrix low-rank factorization models.

In the second paper, we propose a new first-order framework for orthogonal constrained optimization problems. Based on this new framework, we develop two types of algorithms: gradient reduction based algorithms and column-wise block coordinate descent algorithms. Preliminary experiments illustrate that our new framework is of great potential.

In the third paper, we established some new properties for the Łojasiewicz exponent of the quadratic sphere constrained optimization problem.

In the fourth paper, we present new complexity results of partially-separable convexly-constrained optimization with non-Lipschitzian singularities.

In the fifth paper, we proposed an exact penalty method for semidefinite-box constrained low-rank matrix optimization problems.

In the sixth paper, we developed a new continuous optimization model for spectral Clustering.

The other three papers focus on ADMM algorithm. We studied the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, a class of ADMM-based algorithms for three-block separable convex programming, and convergence of the symmetric version of ADMM with larger step sizes.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Our research outcome will enhance the applications of sparse optimization in engineering and science.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Many interesting models arising in a variety of application domains such as information theory, image processing, statistical learning, medical imaging, bioinformatics, electronic commerce, computer vision, share the feature of seeking a solution with the sparsity structure of an optimization model in a vector, matrix or tensor space. Consequentially, a number of sparse optimization models arise widely in the literature. Mathematically, these models may have the difficulty of non-smoothness, non-Lipschitzness, and even non-convexity. Moreover, in the era with big data where the dimensionality of models increases extremely rapidly, these sparse optimization models usually have another common difficulty of the high dimensionality. All these difficulties critically urge optimizers to work intensively on the algorithmic aspects of these sparse optimization models and thus develop efficient numerical algorithms with affirmative theoretical supports; this is the main purpose of this project. We systematically investigated how to develop efficient numerical algorithms for some sparse optimization models with strong application backgrounds; and analyzed the corresponding theoretical properties such as the convergence and convergence rates of these algorithms. The algorithms can also be applied to solve some real-life sparsity-driven applications. The outcome of this project can enhance the interaction between optimization and other disciplines as mentioned; and provide faster algorithms for practitioners in the mentioned areas.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The L	atest Status of	Publicatio	ns	Author(s)	Title and Journal/ Book	Submitte	Attach	Acknowl	Accessible
Year of	Year of	Under	Under	(bold the	(with the volume, pages and other	d to	ed to	edged the	from the
publication	Acceptance	Review	Prepara	authors	necessary publishing details	RGC	this	support	institution
	(For paper		tion	belonging to	specified)	(indicate	report	of this	al .
	accepted but		(the project		the year	(Yes or	Joint Rasaarah	repository
	not yet		(option	denote the		enaing oj the	100)	Scheme	(les or No)
	published)		<i>uı)</i>	correspondi		relevant		(Yes or	
				ng author		progress		No)	
				with an		report)			
				asterisk*)					
				H. Wang	SNIG Property of Matrix	yes	yes	yes	yes
2017				X. Liu,	Low-rank Factorization				
				X. Chen	Model/ J. Computational				
				Y. Yuan	Mathematics, 36(2018),				
					374-390.				
				B. Gao	A New First-order	yes	ves	ves	ves
2018				X. Lin.	Algorithmic Framework	5	5	5	-
2010				X Chen	for Optimization				
				X. Chen V. Vuon	Drobloma with				
				r. ruan					
					Orthogonality				
					Constraints / SIAM J.				
					Optimization, 28(2018)				
					302-332 .				
				B. Gao	On the Łojasjewicz	yes	ves	ves	ves
		2018		X. Lin.	Exponent of the	5	5	5	5
		2010		X Chen	Quadratic Sphere				
				X. Chun	Constrained				
				1. Tuan	Constrained				
					Optimization Problem/				
					Mathematics of				
					Operations Research				
					(under review)				
				X. Chen	Complexity of	yes	yes	yes	yes
	2018			P. Toint	partially-separable				
				H. Wang	convexly-constrained				
				8	optimization with				
					non-Linschitzian				
					singularities /SIAM I				
					Ontimization				
				тт:					
	2010			1. L1u	An exact penalty method	yes	yes	yes	yes
	2018			Z. Lu	tor semidefinite-box				
				X. Chen	constrained				
				Y. Dai	low-rank matrix				
					optimization				
					problems/IMA J. Numer.				
					Anal				
1	1	1	1	1	1 1110010	1	1	1	1

	X. Liu	A new continuous	yes	yes	yes	yes
2018	M. Ng	optimization model for				
	R.Zhang	spectral clustering,				
	Z. Zhang	/Math. Numer.Sinica,				
		40(2018), 354-366.				
	X. Cai	On the convergence of	yes	yes	yes	yes
2017	D. Ha n	the direct extension of				
	X. Yuan	ADMM for three-block				
		separable convex				
		minimization models				
		with one strongly convex				
		function/Comput. Optim.				
		Appl. 66(2017), 39-73				
	B. He	A class of ADMM-based	yes	yes	yes	yes
2018	X. Yuan	algorithms for				
		three-block separable				
		convex programming/				
		Comput. Optim. Appl.				
		70(2018), 791-826.				
	B. He	Convergence study on	yes	yes	yes	yes
2016	F. Ma	the symmetric version of				
	X. Yuan	ADMM with larger step				
		sizes/SIAM J. Imaging				
		Sci. 9(2016),1476-1501.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
12-15 July 2015 / Pittsburgh, USA	SNIG Property of Matrix Low-rank Factorization Model	The 22nd International Symposium on Mathematical Programming	2016	No	Yes	Yes
6-11 August 2016 / Tokyo Japan	A New First-order Framework for Orthogonal Constrained Optimization Problems	The Fifth International Conference on Continuous Optimization	2016	No	Yes	Yes

1-6 July	On the	The 23rd	No	Yes	Yes	Yes
2018 /	Łojasiewicz	International				
Bordeaux,	Exponent of	Symposium on				
France	Quadratic	Mathematical				
	Minimization	Programming				
	with Sphere					
	Constraint					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/
			graduation
Wang Hong	PhD	August 2013	December 2016

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

The two teams have visited each other several times every year during 2015-2018. The purposes of visits were to conduct joint research on this project, and organized joint conferences/workshops. In the last 13 years, the two teams have conducted excellent collaboration. In 2017, the PI of the Hong Kong Team and that of the Mainland Team applied for the Chinese Academy of Sciences (CAS), Academy of Mathematics and Systems Science (AMSS)-PolyU Joint Laboratory of Applied Mathematics. In October 2018, CAS has approved the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics. The PIs of this project are the directors of the laboratory. This joint laboratory will enhance the collaboration between applied mathematicians in Hong Kong and the Mainland.