The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

III-V-on-Silicon Coupled-Resonator-Optical-Waveguide Lasers for Direct-Modulated Multi-Wavelength Emission and Active Mode-Locking

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Andrew Wing On	Prof. Yong-Zhen HUANG
Investigator (with title)	POON	
Post	Professor	Professor
Unit / Department /	Department of Electronic	State Key Laboratory on
Institution	and Computer Engineering,	Integrated Optoelectronics,
	The Hong Kong University	Institute of Semiconductors,
	of Science and Technology	Chinese Academy of
	(HKUST)	Sciences (ISCAS)
Contact Information	eeawpoon@ust.hk	yzhuang@semi.ac.cn
Co-investigator(s)		Dr. Yue-De YANG
(with title and		Dr. Jin-Long XIAO
institution)		State Key Laboratory on
		Integrated Optoelectronics,
		ISCAS

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	1 Jan. 2015		
Project Completion date	31 Dec. 2018		
Duration (in month)	48		

Deadline for Submission of	31 Dec 2019	
Completion Report		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To experimentally investigate hybrid integrated InGaAsP-on-silicon coupled-resonator optical waveguide (CROW) lasers as a spectrally reconfigurable, multi-wavelength laser source, with separate direct modulations using pixelized injection patterns based on the CROW eigenstate intensity distributions

- 2. To experimentally investigate the CROW laser as a spatially multiplexed multi-wavelength light source, with separate direct modulations and spatially separate coupled waveguides for different coupled resonators
- 3. To experimentally investigate the CROW laser as a passively or actively mode-locked laser source, with the ability to generate pseudo-random pulse patterns
- 4. To experimentally investigate the CROW laser integrated with in-cavity silicon power monitors (by nonlinear two-photon absorption (TPA) and linear defect-state absorption) distributed along the CROW structure for feedback-controlled pixelized injection patterns
- 5.2 Revised Objectives

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

1. We demonstrated *multimode*, *continuous-wave lasing* in *heterogeneously integrated III-V-on-Si microspiral disk lasers* using spatially selective injection at room temperature. We attained a low threshold current of ~11 mA. We have published this work as part of an *invited review* article in the IEEE JSTQE2018 and also in conference proceedings (Part C).

2. Together with our NSFC project collaborators, we have *jointly demonstrated heterogeneously integrated III-V-on-Si Fabry-Perot lasers*, with increased slope efficiencies due to the enhanced mode confinement enabled by the p-electrode-covered cavity facets. We have demonstrated multimode continuous lasing and singlemode pulsed lasing with threshold currents of 45 mA and 16 mA, respectively. We have *co-authored* a Journal of Semiconductor 2018 publication (Part C).

3. We demonstrated *adhesively bonded III-V-on-silicon two-element coupled-microring lasers upon broad-beam pulsed optical pumping at room temperature.* We observed a single-mode lasing with a threshold fluence of ~0.4 mJ/cm². Based on this research outcome, we are currently working on molecularly bonded III-V-on-silicon multi-element coupled-microring lasers upon spatially selective pulsed optical pumping at room temperature.

4. We successfully developed a *controlled, batch process for simultaneously bonding four III-V dies to four patterned SOI dies* using both adhesive bonding and silica bonding techniques, attaining a good area retention. We *jointly* developed some of the core fabrication processes with our NSFC project collaborators, specifically the polymer adhesive bonding, based on many of their advices. The process developments underlie the Journal of Semiconductor 2018 journal publication in Outcome 2.

5. We systematically studied *all-silicon DSA microring-resonator sub-bandgap photomonitors* in the 1550nm wavelengths using various ion species for implantation. We also studied the photomonitors' responsivity under various annealing temperatures. Our experiments revealed a maximum waveguide responsivity of ~10 mA/W/mm using 7.5×10^{12} cm⁻² of Ar ion implantation. We have published this work as part of an *invited review* article in the IEEE JSTQE2018 (Part C).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

There are still much room for on-going development of the research as we have alluded to above. We will continue to optimize our fabrication processes, with an immediate objective to reduce the series resistance to tens of ohms and to optimize the inter-layer coupling between the III-V gain and the silicon coupled microresonators using molecular silica bonding. We will further explore the originally proposed Objectives (1) - (4) once we have demonstrated *continuous-wave injection coupled-microresonator lasers* with single- and multi-mode lasing on an improved III-V-on-silicon photonics platform.

Leveraging the research outcomes of this project, we have successfully applied for another competitive grant (GICI-003, starting 1-1-2020) whereby we will extend on the concepts of integration and photomonitor integration to investigate programmable heterogeneous heterogeneously III-V-on-Si integrated microring switch arrays for next-generation high-performance computing. We have also submitted another RGC GRF (16207420) grant application in Nov. 2019 to investigate *photonics reservoir computing* using an III-V-on-silicon coupled-microring laser network.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Optical interconnects technology offers many key advantages including a high data bandwidth and potentially low-power consumption compared to the conventional electrical interconnects. Moreover, multiplexing schemes such as wavelength-division multiplexing (WDM) and spatial-division multiplexing (SDM) can further enhance the data bandwidth of optical interconnects. In this work, we laid the necessary fundamentals developing a coherent array of coupled semiconductor microlaser sources integrated on a silicon chip, with potentially tunable lasing wavelengths or multiple lasing wavelengths or a pulsed laser source output-coupled at different spatial output ports. Such on-chip laser sources, upon successful realization, can serve as a multi-functional active photonic building block in future high-data-bandwidth and low-power-consumption optical interconnects. They will enable emerging functionalities or network architectures for next-generation high-performance computing systems and big-data communications, especially for data-center interconnect applications.

Specifically, the many fabrication process know-hows developed through this work will open up many possibilities of integrating III-V semiconductor-based active photonics on silicon-based photonic devices and circuits. Our developed heterogeneous integration fabrication technology will enable us to develop technologies such as programmable III-V-on-Si photonics in the near future.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Latest Status of Publications	Author(s)	Title and	Submitted to Attached	Acknowledge Accessible	
-----------------------------------	-----------	-----------	-----------------------	------------------------	--

NSFC/RGC 8 (Revised 01/18)

Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
	(For paper			belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publisning dotails				
				usierisk ⁺)	specified)				
2018				7 Yao K	Integrated	2019	Ves	Ves	Ves
2010				$\mathbf{W}_{\mathbf{N}}$ D V		2017	105	105	105
				wu, д. д.	sincon				
				1 an, J.	photonic				
				Wang, Y.	microreso				
				Li, Y.	nators:				
				Zhang, A.	Emerging				
				W. Poon*	technologi				
					es				
					(invited)				
					Journal of				
					Selected				
					Topics in				
					Quantum				
					Electronic				
					s. Vol. 24.				
					No 6				
					5000324				
					5900524,				
					Nov./Dec.				
					2018.				
2018				Y. Yang, S.	Hybrid	2019	Yes	Yes	Yes
				Sui, M.	AlGaInAs				
				Tang, J.	/Si				
				Xiao Y	Fabry_Pér				
				$\Delta \mathbf{W}$	ot logoro				
				$\mathbf{D}\mathbf{u}, \mathbf{A}, \mathbf{W}$					
				Poon, Y.	with				
				Huang*	near-total				
					mode				
					confineme				
					nts,				
					Journal of				
					Semicond				
					uctors 20				
					(0)				
					$(\delta),$				
					084001,				
					Aug.				
					2018.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the	,	Scheme	(Yes or No)
			relevant		(Yes or No)	()
			progress		(100 01 100)	
			report)			
May/2015/S	Waveguide-inte	CLEO-	2016	Yes	Yes	Yes
an Jose,	grated	Conference on Lasers			(acknowledged	
USA	unidirectional-e	and			on the poster	
	mission	Electro- Optics 2015			presentation)	
	microspiral	*				
	lasers for optical					
	interconnects					
Nov/2017/Si	Heterogeneousl	PIERS- Progress In	2019	Yes	Yes	Yes
ngapore	v Integrated	Electromagnetics				
81	III-V-on-silicon	Research Symposium				
	Microspiral	2017				
	Disk Lasers for	2017				
	Optical					
	Interconnects					
Nov/2017/Si	Thormal Shunta	DIEDS Drograds In	2010	Vac	Vac	Vac
N0V/2017/51	for	FIERS-Flogless III	2019	165	168	168
ligapore		Dessearch Summasium				
	Heterogeneousi	Research Symposium				
	y Integrated	2017				
	III-V-on-Silicon					
	Microspiral					
	Disk Lasers					
May/2018/S	Design	CLEO-	2019	Yes	Yes	Yes
an Jose,	Principles for	Conference on Lasers			(acknowledged	
USA	Heterogeneousl	and			on the oral	
	y Integrated	Electro- Optics 2018			presentation	
	III-V-on-Silicon				slides)	
	Microdisk					
	Unidirectional					
	Singlemode					
	Lasers					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
ZHANG Yu	PhD	1-9-2010	2-5-2016
WU Kaiyi	PhD	1-9-2015	Expected 31-8-2021
TAN Bo Xue	PhD	1-9-2016	Expected 31-8-2021
LI Jiayang	PhD	1-9-2018	Expected 31-8-2023

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Best Student Paper Award 1st prize for the Optics and Photonics subcommittee at the 39th Progress in Electromagnetics Research Symposium (PIERS 2017) for the paper titled "Heterogeneously Integrated III-V-on-silicon Microspiral Disk Lasers for Optical Interconnects"

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	2	4	0	0	1 (Best Student
arising directly					Paper Award)
from this research					_
project [or					
conference]					