

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Investigation of new multi-functional materials based on hierarchical porous mixed oxides and carbon aerogels for air purification and disinfection

	Hong Kong Team	Mainland Team
Name of Principal	Prof. YEUNG King Lun	Prof. QIU Jieshan
Investigator (with title)		
Post	Full Professor	Cheung Kong Professor
Unit / Department /	Department Chemical and	Faculty of Chemical,
Institution	Biological Engineering,	Environmental and Biological
	Division of Environment and	Science and Technology /
	Sustainability / The Hong	Dalian University of
	Kong University of Science	Technology
	and Technology	
Contact Information	kekyeung@ust.hk	jqiu@dlut.edu.cn
Co-investigator(s)	Prof. KWAN Joseph KC,	Prof. MO Ziyao, Guangzhou
(with title and	Health, Safety and	State Key Laboratory of
institution)	Environmental Office;	Respiratory Disease
	Dr. HAN Wei, Division of	
	Environment	

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	January 1, 2014		
Project Completion date	December 31, 2017		
Duration (in month)	48		

Deadline for Submission of	December 31,	
Completion Report	2018	

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. To design, synthesize and characterize mixed oxides and carbon aerogels with hierarchical pore structures for molecular and particulate filtrations;

2. To incorporate active functional sites for (i) capture of airborne microorganisms, (ii) adsorption of molecular pollutants, (iii) catalytic conversion of molecular pollutants, (iv) inactivation of microbial contaminants;

3. To observe in operando the molecular mechanism and process of capture, transformation and inactivation of pollutants in these materials under practical use conditions;

4. To carry out material and process optimization using mathematical modeling based on experimental evidence for the design of a prototype for field test.

5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change:

1. 2. 3.

6. Research Outcome

Major findings and research outcome

(maximum 1 page; please make reference to Part C where necessary)

1. Aerogel matrices

Silica and silica-titania aerogels were prepared from silicon and titanium alkoxides via two-step sol-gel process (i.e., acid-catalyzing hydrolysis and base-catalyzing condensation) and supercritical drying process (*Ref. 9-Poster 9*). Freestanding non-silica, metal oxide aerogels were also prepared using gelation agents such as propylene oxides. These metal oxide aerogels can be transformed into MOFs aerogel using a new synthesis technique developed in the laboratory (*Ref. 8-Paper 3; 9-Oral 5; 9-Poster 2, 8 & 10*). Graphene aerogels (or cryogels) were prepared by using amine-containing cross linkers to assemble graphene oxide suspension during hydrothermal process, followed by supercritical (or freeze) drying process (*Ref. 9-Oral 3*).

2. Active material incorporation

New preparation methods were developed to spatially incorporate active functional sites (e.g., metals, metal oxides, metal complexes) into different locations (e.g., external surface, interlayer, core) of nanotubes by adjusting type, addition sequence, surface charge and concentration of active precursors (*Ref. 11-Patent 1*). A series of high active

adsorbents (e.g., zeolites, Fe/zeolites, metal-organic framework materials) and catalysts (e.g., VO_x/TiO₂, Cu/VO_x/TiO₂, Au/VO_x/TiO₂, CeO₂) were developed for effective capture and conversion of molecule pollutants including VOCs and malodors (mainly NH₃ and H₂S) (*Ref. 9-Oral 4, 7; 9-Poster 5, 6*). The above-mentioned active materials were incorporated into oxide and graphene aerogels by ex-situ (i.e., assembling active materials during aerogel preparation) and in-situ (i.e., growing active materials from precursors during aerogel preparation) routes (*Ref. 9-Oral 1, 6; 9-Poster 1, 3, 4, 7*). The obtained active oxide and graphene aerogels exhibited excellent adsorption and catalytic conversion performances for molecule pollutants and enhanced filtration efficiencies for particulate matter as well as bactericidal activities (*Ref. 8-Paper 4; 9-Oral 3*).

3. Mechanism investigation

Operando Raman-online FTIR system was used to investigate catalytic mechanisms for molecule pollutants (e.g., toluene, NH₃). The nature of the active sites, configurational adsorption of toluene and the reactive oxygen species play important roles in the catalyst activity and selectivity (*Ref. 8-Paper 1, 2; 9-Oral 2*). The reaction intermediate of NH₃ selective oxidation on VO_x/TiO₂ catalyst is hydrazinium ion. The proposed reaction route is NH₃ adsorption, the formation and decomposition of hydrazinium ion to N₂ and H₂O (*Ref. 9-Oral 7; 9-Poster 9*).

4. Material optimization

Microporous material including zeolites and metal-organic framework materials were incorporated into oxide and graphene aerogel matrixes to generate optimally designed hierarchical porous structures (*Ref. 9-Poster 3, 4, 7*). Bimetal-organic framework materials were transformed into low-dimensional mixed metal oxides by controlled thermal decomposition process. The optimized metal oxides were capable of effectively converting molecule pollutants under near-ambient conditions (*Ref. 11-Patent 2*).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Research outcomes have led to a grant from the Guangzhou Collaborative Innovation Key Program. We are cooperating with a mainland company to scale up oxide aerogels for practical application of VOC catalytic conversion under near-ambient conditions.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

This project successfully developed new synthesis routes for preparing aerogels from diverse materials including metal oxides, metal-organic frameworks and graphene that has unique mechanical, thermal, electrical and transport properties. Studies show that aerogels particularly graphene aerogels can filter particulates from air as good as the European H11 HEPA filters. It can simultaneously capture and inactivate airborne bacteria. Furthermore, graphene aerogel can adsorb toluene, an important volatile organic pollutant found indoor. Incorporation of catalysts allow the graphene aerogel to treat VOCs such as acetone, methanol, cyclohexane and toluene.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising directly from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publica	tions	Author(s)	Title and Journal/	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Book	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	(with the volume,	(indicate the	report (Yes	of this Joint	institutional
	(For paper			belonging to	pages and other	year ending	or No)	Research	repository
	accepted but		(optional)	the project	necessary	of the		Scheme	(Yes or No)
	not yet			teams and	publishing details	relevant		(Yes or No)	
	published)			denote the	specified)	progress			
				corresponding		report)			
				author with an					
2010				asterisk*)	0 1	D 1	X 7	X 7	X7
2018				Qingyue	Operando	December	res	res	res
				Wang,	Raman-online	31, 2018			
				King Lun	FTIR				
				Yeung*,	investigation				
				Miguel A.	of ceria,				
				Bañares*	vanadia/ceria				
					and gold/ceria				
					catalysts for				
					toluene				
					elimination				
					Lournal of				
					Catalysis, 364:				
					80-88			-	
			\checkmark	Qingyue	A Review of	December	Yes	Yes	No
				Wang,	Ceria	31, 2018			
				King Lun	Catalysts for				
				Yeung*,	VOCs				
				Miguel A.	Remediation				
				Bañares*	(draft				
					completed to				
					be submitted				
					to Cat. Today)				
				7hong Lin	A facile	Deserveber	Vac	Vaa	No
			N	Znang Liu,	A fache	December	res	res	NO
				wei Han,	conversion	31, 2018			
				King Lun	route for metal				
				Yeung*	organic				
					framework				
					(MOF)				
					aerogels				
					(draft				
					completed to				
					he submitted				
					to Angew				
					Chamin				
1	1		1	1	iunemie)	1	1	1	1

	 Weiyang	Catalytic	December	Yes	Yes	No
	Chen,	graphene	31, 2018			
	King Lun	aerogel for air				
	Yeung*	purification				
	_	and				
		disinfection				
		(draft				
		completed to				
		be submitted				
		to Appl. Catal.				
		B)				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place	11110	Conterence i vanie	to RGC	to this	the support of	from the
1 Idee			(indicate the	report	this Joint	institutional
			vear ending	(Vas or No)	Descorch	rapository
			of the	(105 01 100)	Sahama	(Vag or No)
			relevant		(Vag on Ma)	(Tes or No)
			progress		(Tes or No)	
			report)			
08/2018/	Ultralight,	256th ACS National	December	Yes	Yes	Yes
Boston, USA	monolithic	Meeting & Exposition	31. 2018			
,	graphene and		,			
	ceria aerogels for					
	VOCs removal					
	and disinfection					
	(Oral 1)					
04/2017/	Operando	253rd ACS National	December	Yes	Yes	Yes
San	Raman-FTIR	Meeting & Exposition	31 2018	105	105	105
Francisco	study of gold		51, 2010			
	catalysts					
USA	supported on					
	titania and ceria					
	for VOC related					
	odor alimination					
	(Oral 2)					
09/2016/	(Ofal 2)	252md ACC National	December	Vaa	Vaa	Vaa
08/2010/	Characterizations	252nd ACS National	December	res	res	res
Philadelphia,	of the transport	Meeting & Exposition	31, 2018			
USA	properties of					
	graphene					
	aerogels:					
	electrical,					
	thermal, and gas					
	transport					
	properties (Oral					
	3)					

11/2015/ Salt Lake City, USA	Synthesis, characterization of Au/V ₂ O ₅ /CeO ₂ , Au/V ₂ O ₅ /TiO ₂ catalysts and their performance in VOC-related malodor treatment (Oral 4)	2015 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
08/2015/ Boston, USA	CPO-27-Ni aerogel incorporated in nickel foam for efficient CO_2 capture (Oral 5)	250th ACS National Meeting & Exposition	December 31, 2015	No	Yes	Yes
06/2015 Singapore	Freestanding porous mixed oxides and graphene aerogels for air purification and disinfection (Oral 6)	8th International Conference on Materials for Advanced Technologies	December 31, 2015	No	Yes	Yes
11/2014/ Atlanta, USA	Synthesis, characterization of vanadia/titania- based catalysts and their performance in ammonia remediation (Oral 7)	2014 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
08/2014/ San Francisco, USA	Malodor treatment using controlled-release antimicrobial gel (Oral 8)	248 th ACS National Meeting and Exposition	December 31, 2015	No	Yes	Yes
04/2017/ San Francisco, USA	Monolithic aerogels of graphene-mixed metal oxides for air purification and disinfection (Poster 1)	253rd ACS National Meeting & Exposition	December 31, 2018	Yes	Yes	Yes
11/2016/ San Francisco, USA	Compressive mechanical properties of metal-organic framework (MOF) aerogels prepared by supercritical drying (Poster 2)	2016 AIChE Annual Meeting	December 31, 2018	Yes	Yes	Yes

11/2016/ San Francisco, USA	Preparation of graphene-MOFs composite aerogels (Poster 3)	2016 AIChE Annual Meeting	December 31, 2018	Yes	Yes	Yes
08/2016/ Philadelphia, USA	Synthesis of MOF-graphene hybrid aerogels (Poster 4)	252nd ACS National Meeting & Exposition	December 31, 2018	Yes	Yes	Yes
08/2016/ Philadelphia, USA	Low temperature catalyst for VOC abatement (Poster 5)	252nd ACS National Meeting & Exposition	December 31, 2018	Yes	Yes	Yes
11/2015/ Salt Lake City, USA	Catalysts for treating H ₂ S malodor problem at ambient temperature (Poster 6)	2015 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
11/2015/ Salt Lake City, USA	Design, synthesis and fabrication of freestanding aerogels of graphene-MOFs for air treatment (Poster 7)	2015 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
11/2015/ Salt Lake City, USA	Preparation, characterization and catalytic performance of vanadium oxide supported on titania nanobundle for NH ₃ degradation (Poster 8)	2015 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
11/2015/ Salt Lake City, USA	Copper/vanadia/ti tania bifunctional catalysts for ammonia remediation (Poster 9)	2015 AIChE Annual Meeting	December 31, 2015	No	Yes	Yes
08/2015/ Boston, USA	The synthesis of freestanding metal-organic- framework (MOF) aerogels (Poster 10)	250th ACS National Meeting & Exposition	December 31, 2015	No	Yes	Yes
08/2015/ Boston, USA	Aerogel catalysts for direct remediation of NH ₃ malodor in air (Poster 11)	250th ACS National Meeting & Exposition	December 31, 2015	No	Yes	Yes

11/2014/	A general route to	2014 AIChE Annual	December	No	Yes	Yes
Atlanta, USA	prepare	Meeting	31, 2015			
	metal-organic-					
	framework					
	aerogel (Poster					
	12)					
08/2014/San	Room	248th ACS National	December	No	Yes	Yes
Francisco,	temperature	Meeting & Exposition	31, 2015			
USA	VO _x /TiO ₂ catalyst					
	for treatment of					
	H ₂ S malodor in					
	air (Poster 13)					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
			graduation
LAI Yue Tak	MPhil	September, 2012	August, 2014
CHEUNG Kei Bo	MPhil	September, 2012	January, 2015
CHANG Qing	PhD	September, 2010	February, 2015
LIU Zhang	PhD	February, 2013	January, 2018
WANG Qingyue	PhD	September, 2014	November, 2018

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Patents

(1) King Lun Yeung, Shammi Akter Ferdousi and Wei Han, "Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof", Chinese Patent (Patent No. ZL201380015460.5), Hong Kong Patent (Patent No. HK1202518), US Patent (Pub. No. US20150050494A1).

(2) King Lun Yeung, Qingyue Wang, Zhimin Li and Wei Han, "Two-dimensional catalytic materials derived from metal-organic frameworks for VOC remediation", US Provisional Patent (Appl. No. US62764371).

Collaboration

(1) Establish the Collaboration on operando technologies with Prof. Miguel A. Bañares' group in Institute for Catalysis and Petrochemistry, Spanish National Research Council.

(2) Establish the collaboration on air treatment technologies with Prof. Suojiang Zhang's group in Institute of Process Engineering, Chinese Academy of Sciences.