The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Development of triterpenoid natural product derivatives as new antiviral drugs directly blocking the receptor binding site of influenza virus

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Zhihong Guo	Prof. Demin Zhou
Investigator (with title)		
Post	Associate Professor	Professor
Unit / Department /	Chemistry/HKUST	State Key Laboratory of
Institution		Natural and Biomimetic
		Drugs, School of Medicine,
		Peking University
Contact Information	Department of Chemistry,	State Key Laboratory of
	The Hong Kong University of	Natural and Biomimetic
	Science and Technology,	Drugs, School of
	Clear Water Bay, Kowloon,	Pharmaceutical Sciences,
	Hong Kong	Peking University, 38
		Xueyuan Road, Beijing
		100191, China
Co-investigator(s)	N.A.	Dr. Maorong Yu
(with title and		
institution)		

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1-1-2014		
Project Completion date	31-12-2017		
Duration (in month)	48		
Deadline for Submission of Completion Report	31-12-2018		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To crystallize the complexes of two hemagglutinins in different phylogenic groups with **Q9** and determine their structure in high-resolution.
 - 2. To determine the specificities of the anti-influenza activity of **Q9** by determining its binding affinity for various hemagglutinin subtypes and its antiviral activities towards influenza strains carrying the corresponding subtypes of hemagglutinin.
 - 3. To carry out multiple rounds of **Q9** analog synthesis and activity evaluation to maximize the antiviral potency and therapeutic index, as guided by cell-based antiviral assays and the structure-activity relationships acquired from the biochemical and structural studies.

- 4. To test the efficacy of the optimized lead compound in mice challenged with highly virulent strains of influenza virus such as H5N1 and H1N1.
- 5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome

(maximum 1 page; please make reference to Part C where necessary)

This research project is focused on the development of new antif-influenza drugs that blocks the entry of the viral pathogens into the host cells. It has achieved several important findings as listed below:

- (1) The structure-activity relationships of the hit compound of a galactose conjugate of orleanolic acid (Q9) have been successfully elucidated after multiple rounds of analogue synthesis and activity determination.
- (2) The structure of the hit compound has been optimized to obtain several analogs with significantly enhanced anti-influenza activity, including **Q8**, **Y3** and **Y4** (Yu *et al. J. Med. Chem.* **2014**, *57*, 10058–10071).
- (3) The hit and optimized triterpene-sugar conjugates have been successfully demonstrated to bind the receptor binding pocket of hemaglutinins through photoactivated crosslinking and protein mass spectroscopy, despite the failure to determine the crystal structures of the hemagglutinins in complex with the small molecule inhibitors.
- (4) The original hit compound Q9 and the optimized analogs have been found to be active against a broad-spectrum of influenza viruses, demonstrating the general applicability of targeting the receptor binding site of the viral pathogens.
- (5) The entry inhibitors have been shown to be provide protection against infection of influenza viruses in Balb/C mice, demonstrating their *in vivo* efficacy (Yu *et al. J. Med. Chem.* **2014**, *57*, 10058–10071).

These findings validate the receptor recognition site of the influenza hemagglutinin as a new molecular target for development of anti-influenza drugs and provide a new venue to counter the widespread resistance to the few currently available anti-influenza drugs. In addition, the optimized triterpene-sugar conjugates are readily available drug candidates with a new mode of action mechanism that may be subjected to clinical trials.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

This research project has successfully established the receptor binding site of the influenza hemagglutinin as a new molecular target to block the entry of the viral pathogen into the human host cells. This has paved the way forward to develop the viral entry inhibitors as a new class of anti-influenza drugs, which are very promising drug candidates to counter the widespread drug resistance of the influenza viruses. The optimized triterpene-sugar conjugates are currently under evaluation for clinical trials in an attempt to develop them into clinical drugs to treat influenza infections.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Seasonal and pandemic influenza infections pose a constant threat to public health, claiming hundreds of thousands of lives worldwide every year. A valid therapeutic intervention to reduce mortality is to disrupt the virus life cycle in the acute phase of the viral infections, such as blocking the detachment of nascent virions from host cells by Tamiflu. In this research project, we have successfully developed new anti-influenza drug candidates with a new mode of action to block the entry of the viral pathogens into the human host cells. Specifically, we have elucidated the structure-activity relatioships for a galactose conjugate of orleanolic acid, a triterpene natural product, and optimized its structure to obtain several analogues with significantly enhanced entry inhibition activities. In addition, these optimized triterpene-sugar conjugates are found to exhibit broad-spectrum activity against different clinical strains of influenza viruses of both A and B types and to protect mice from the viral infections. Moreover, the optimized conjugates are shown to bind to the receptor binding site of the viral hemagglutinin protein via photoactivated crosslinking and protein mass spectroscopy. These findings not only provide several promising drug candidates to treat influenza infections but have also have successfully established the receptor binding site of the influenza hemagglutinin as a new molecular target for the development of anti-influenza drugs.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The La	The Latest Status of Publications		The Latest Status of Publications			Author(s)	Title and Journal/	Submitted	Attached	Acknowled	Accessi
Year of	Year of	Under	Under	(bold the authors	Book	to RGC	to this	ged the	ble from		
publication	Acceptance	Review	Preparati	belonging to the project	(with the volume,	(indicate	report (Yes	support of	the		
_	(For paper		on	teams and denote the	pages and other	the year	or No)	this Joint	institutio		
	accepted			corresponding author	necessary	ending of		Research	nal		
	but not yet		(optiona	with an asterisk*)	publishing details	the		Scheme	repositor		
	published)		l)		specified)	relevant		(Yes or	у		
						progress		No)	(Yes or		
						report)			No)		

2014	Maorong Yu*,	Discovery of	2015	No	Yes	Yes
2017	Longlong Si, Yufei	•	2015	110	105	105
	Wang, Yiming Wu					
	Fei Yu, Pingxuan	potential entry				
	Jiao, Yongying	inhibitors of				
	Shi, Han Wang,	influenza				
	Sulong Xiao, Ge	viruses. J.				
	Fu, Ke Tian, Yitao	Med. Chem.				
	Wang, Zhihong	2014, 57,				
	Guo, Lihe Zhang,	10058–10071.				
	and					
	Demin Zhou*					
2015	Yaozong Chen,	Structural	2015	No	Yes	Yes
	Yueru Sun,	basis for the				
	Haigang Song, and	ATP-dependen				
	Zhihong Guo*	t configuration				
	8	of adenylation				
		active site in				
		Bacillus				
		subtilis				
		o-succinylbenz				
		oyl-CoA				
		Synthetase. J.				
		Biol. Chem.				
		2015 , <i>290</i> ,				
		23971–23983.		ļ		
2016	Ju-Xian Song,	A novel	2018	Yes	Yes	Yes
	Yue-Ru Sun, Ivana					
	Peluso, Yu Zeng,	analog binds to				
	Xing Yu, Jia-Hong	and activates				
	Lu, Zheng Xu,	TFEB in vitro				
	Ming-Zhong Wang	, and in vivo				
	Liang-Feng Liu,	independent of				
	Ying-Yu Huang,	MTOR				
	Lei-Lei Chen, Siva					
	Sundara Kumar	Autophagy				
	Durairajan,	2016 , <i>12</i> , 1272, 1280				
	Hong-Jie Zhang,	1372–1389.				
	Bo Zhou, Hong-Qi					
	Zhang, Aiping Lu,					
	Andrea Ballabio,					
	Diego L. Medina*,					
	Zhihong Guo*, and					
	Min Li*					
2016	Haigang Song,	A thiamine-	2018	Yes	Yes	Yes
	Chen Dong,	dependent				
	Mingming Qin;	enzyme				
	Yaozong Chen,	utilizes an				
	Yueru Sun, Jingjing					
	Liu, Wan Chan,	tetrahedral				
	Zhihong Guo*	intermediate in				
		vitamin K				
		biosynthesis. J.			1	
		Am. Chem.				
		Soc. 2016,				

2016	Yaozong Chen,		2018	Yes	Yes	Yes
	Yiping Jiang,	insights from				
	Zhihong Guo*	the crystal				
		structure of				
		Bacillus				
		subtilis				
		o-succinylbenz				
		oyl-CoA				
		synthetase				
		complexed				
		with the				
		adenylate				
		intermediate.				
		Biochemistry				
		2016 , <i>55</i> ,				
		6685–6695.				
2017	Yaozong Chen, T		2018	Yes	Yes	Yes
	Lok Li, Xingbang	-				
	Lin, Xin Li, Xian					
	David Li, Zhihon					
	Guo*	conformation				
	Guo					
		of <i>Bacillus</i>				
		subtilis				
		o-succinylbenz				
		oyl-CoA				
		synthetase				
		reveals a				
		unique				
		substrate				
		recognition				
		mode. J. Biol.				
		<i>Chem.</i> 2017 ,				
		292,				
		12296–12310.				
019	Minansina Oir		2019	Ver	Var	Yes
2018	Mingming Qin,		2018	Yes	Yes	res
	Haigang Song, X					
	Dai, Chi-Kong	kinetics reveal				
	Chan, Wan Chan					
	Zhihong Guo*	of thiamine				
		diphosphate-de				
		pendent				
		catalysis in				
		vitamin K				
		biosynthesis.				
		ChemBioChem				
		2018 , <i>19</i> ,				
		1514-1522.				

2018	Mingming Qin,	*. Two active	2018	Yes	Yes	Yes
	Haigang Song, Xin	site arginines				
	Dai, Yaozong	are critical				
	Chen, Zhihong	determinants				
	Guo*	of substrate				
		binding and				
		catalysis in				
		MenD, a				
		thiamine-depe				
		ndent enzyme				
		in				
		menaquinone				
		biosynthesis.				
		Biochem. J.				
		2018 , <i>475</i> ,				
		3651–3667.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference	Submitted to	Attached	Acknowled	Accessible
Place		Name	RGC (indicate	to this	ged the	from the
			the year ending	report	support of	institutiona
			of the relevant	(Yes or No)	this Joint	l repository
			progress		Research	(Yes or No)
			report)		Scheme	
					(Yes or No)	
Nov/2016/	Structural and kinetic	The Fourth	2018	Yes	Yes	Yes
Southern	investigation of the	South China				
University of	thiamine-dependent	Structural				
Science and	MenD from the	Biology				
Technology,	Escherichia coli	Symposium				
Shenzhen, China	menaquinone					
	biosynthetic pathway					
Nov/2016/	Structural and	The Fourth	2018	Yes	Yes	Yes
Southern	mechanistic	South China				
University of	investigation of the	Structural				
Science and	membrane associated	Biology				
Technology,	phosphate	Symposium				
Shenzhen, China	acyltransferase PlsX					
Nov/2016/	Conformational	The Fourth	2018	Yes	Yes	Yes
Southern	intermediates in the	South China				
University of	domain-alteration	Structural				
Science and	catalysis of an	Biology				
Technology,	adenylating enzyme in	Symposium				
Shenzhen, China	vitamin K biosynthesis					
Nov/2016/	Structural basis of	The Fourth	2018	Yes	Yes	Yes
Southern	substrate recognition	South China				
University of	of Bacillus subtilis	Structural				
Science and	BioF in biotin	Biology				
Technology,	biosynthesis	Symposium				
Shenzhen, China						

Nov/2017/	Structural basis for	The Fifth South	2018	Yes	Yes	Yes
Fuzhou	peripheral sensing of	China Structural				
University,	membrane regions of	Biology				
Fuzhou, Fujian,	increased fluidity	Symposium				
China		5 1				
Nov/2017/	α-Synuclein senses	The Fifth South	2018	Yes	Yes	Yes
Fuzhou	unsaturated fatty acid	China Structural				
University,	in vitro to form	Biology				
Fuzhou, Fujian,	lipid-associated	Symposium				
China	nonfibrillar α-helical	•				
	oligomers					
Nov/2017/	Generality of the novel		2018	Yes	Yes	Yes
Fuzhou	thiamine-dependent	China Structural				
University,	catalysis medicated by	Biology				
Fuzhou, Fujian,	an active tetrahedral	Symposium				
China	intermediate in					
	menaquinone					
	biosynthesis					
Nov/2017/	Structural and	The Fifth South	2018	Yes	Yes	Yes
Fuzhou	mechanistic	China Structural				
University,	investigation of the	Biology				
Fuzhou, Fujian,	UbiE monotopic	Symposium				
China	membrane localization					
	in coenzyme Q and					
	vitamin K biosynthesis					
Nov/2017/	Role of two conserved	The Fifth South	2018	Yes	Yes	Yes
Fuzhou	arginine residues in the	China Structural				
University,	new thiamine catalysis	Biology				
Fuzhou, Fujian,	mediated by a	Symposium				
China	tetrahedral					
	intermediate in					
	menaquinone					
	biosynthesis					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Yaozong Chen	Ph.D	Sept. 1, 2012	Jan. 31, 2017

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N.A.