The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report____

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Highly parallel algorithms for fluid-structure interaction problems and applications

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Wang Xiao-Ping	Prof. Cai Xiao-Chuan
Investigator (with title)		
Post	Chair Professor	Professor
Unit / Department /	Department of	Shenzhen Institutes of
Institution	Mathematics/The Hong	Advanced Technology/
	Kong University of Science	Chinese Academy of
	& Technology Department	Sciences Computer
	of Mathematics/The	Network Information
	Chinese University of	Center/ Chin
	Hong Kong	
Contact Information	mawang@ust.hk	Xiaochuan.cai@siat.ac.cn
Co-investigator(s)	Prof. Chung Eric Tsz-Shun,	Prof. Zhao Yubo, Prof. Lu
(with title and	Dr. Luo Li, Dr. Du Jie	Zhonghua, Dr. Chen
institution)		Rongliang, Dr. Zhang Jian,
		Dr. Liang Shan

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	Jan 1, 2016		
Project Completion date	Dec 31, 2019		

Duration (in month)	48	
Deadline for Submission of Completion Report	Dec 31, 2020	

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. More accurate mathematical models for hemodynamics
 - 2. Monolithic coupling for FSI problems
 - 3. High resolution schemes on unstructured moving meshes
 - 4. Highly scalable parallel solution algorithms
 - 5. Numerical experiments with patient-specific geometry/material data

NSFC/RGC 8 (Revised 01/18)

5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change: _____

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

- We incorporated the impedance and the resistance boundary conditions to the cardiovascular system for the main aorta and coronary arteries, respectively. We developed a fully coupled approach for the fluid-structure interaction problems. In the fully coupled approach, incompressible Navier-Stokes equations for the fluid flows is described in an arbitrary Lagrangian-Eulerian (ALE) framework [J2, J3] in which a harmonic elliptic equation is employed to describe the motion of the fluid domain. The elasticity equation for the structure deformation is formulated in a Lagrangian framework and three coupling conditions are implicitly enforced in the variational forms of the fluid and structure equations.
- 2) We investigated the use of a new discontinuous Galerkin method [J1, J6] for a nonlinear flow system motivated by realistic blood flow modeling. We demonstrated that the use of this new methodology allows the construction of more accurate approximate solutions with enhanced mass conservation property. We expect that this method will be able to model more realistic situations with clinical data.
- 3) We investigated how to create deformable mesh of high quality based on linear elastic equations, via the construction of local Young's modulus and Poisson ratio. On the one hand, we applied the local adjustment approach to change the distribution of the mesh points. On the other hand, we tried to use the extended finite element method with level-set enriched basis functions to capture the motion of the fluid-solid interface, so that the discontinuity of variables can be correctly revealed at the interface. In both of these two methods, we introduced the idea of "mesh velocity" to the ALE description of the fluid [J2, J3].
- 4) An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. To efficiently solve the systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that cannot be achieved by two-dimensional simulations [J4, J5].
- 5) The blood flow is often smooth in a healthy artery, but may become locally chaotic in a diseased artery with stenosis, and as a result, a traditional solver may take many iterations to converge or does not converge at all. To overcome the problem, we developed a nonlinearly preconditioned Newton method in

which the variables associated with the stenosis are iteratively eliminated and then a global Newton method is applied to the smooth part of the system [C1]. Numerical experiments for several cerebral arteries demonstrate the superiority of the proposed algorithm over the classical method with respect to some physical and numerical parameters.

6) We studied the generation of multiple meshes for computation. We first created a suitable mesh which is able to depict the geometry of interest, then upload the initial mesh to the supercomputer. After partitioning, we refined or coarsened the mesh in parallel to meet the requirement of multilevel calculations [J4, J5, C2]. For visualization purpose, the resulting solutions were interpolated onto a mesh with a suitable size. The operations of interpolating, restricting, and mapping between multiple meshes were realized which serve as the base for multilevel linear or nonlinear preconditioning.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

It should be pointed out that for the numerical simulation of abdominal aortic blood flow, currently there are few large-scale calculation results involving the coronary arteries. Our results benefit from a set of efficient parallel solution algorithms independently developed by the team. We will develop more accurate biomechanical models and corresponding parallel solution algorithms to calculate the corresponding indicators for precisely predicting the AAA rupture risk.

For the coupled fluid-structure modeling, numerical study has been carried out based on fully implicit and fully coupled methods for solving linear elastic equations and incompressible Navier-Stokes equations. The team members used the parallel NKS algorithm to solve the hemodynamic problems in an aorta under pulsed pressure. Considering the anisotropy of blood arteries and the complicated blood flow in the abdominal aortic aneurysm, the current coupled fluid-structure model needs to be further improved, moreover, the interfacial conditions and other boundary conditions need to be further explored. We will consider some personalized parameters that are clinically measurable, such as the artery wall thickness, Young's modulus, and Poisson's ratio to achieve more realistic results.

7. The Layman's Summary

(describe *in layman's language* the nature, significance and value of the research project, in no more than 200 words)

Application of fluid-structure interaction (FSI) methods in simulation-based medical planning is additionally demanding. Artery disease is closely associated with flow properties of the blood and with the interaction between the blood and the vessel wall. In particular, areas of turbulence, flow recirculation, or places where the artery wall is subject to low or oscillating shear stress are at higher risk for plaque formation and disease. Accurate modeling of these flow characteristics might enable better prediction of when and where artery disease will occur and lead to more accurate, less invasive, and more timely treatment.

Due to limitations in computing power, early hemodynamic simulations suffer from many constrains, such as the assumption of rigid vessels, the assumption of Newtonian fluid, and simple geometry etc. To accurately analyze hemodynamics, in this project, we develop an efficient and robust algorithm for solving the FSI problems based on trustworthy mathematical modeling, as well as to provide a set of highly-scalable medical planning software.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

Th	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
	(For paper		_	belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publisning				
				usierisk)	specified)				
2020		Yes		Li Luo*.	Nonlinear	2020	Yes	Yes	No
				Xiao-Chua	preconditi	_0_0	1 00		
J1				n Cai.	oning				
				David E.	strategies				
				Keyes	for				
				2	two-phase				
					flows in				
					porous				
					media				
					discretize				
					d by a				
					fully				
					implicit				
					discontinu				
					ous				
					Galerkin				
					method,				
					submitted				
					to SIAM				
					Journal on				
					Scientific				
					Computin				
					g, minor				
					revision.				

2020	2020		Xiang Li,	An	2020	Yes	Yes	Yes
			Qiang Du,	energy-sta				
J2			Li Luo,	ble				
			Xiao-Ping	scheme				
			Wang*	for a 2D				
			8	simple				
				fluid-parti				
				cle				
				interactio				
				n				
				nrohlem				
				Journal of				
				Computati				
				onal				
				Dhysics				
				(2020)				
				(2020)				
2018	2018		Ving	109830.	21 Dec	No	Vac	Vas
2018	2018		Allig	A	2017	INO	1 68	1 05
J3			Li Luo	atudy of	2017			
			Li Luo, Vice Ding	fluid porti				
			Alao-Filig Wana*	nuid-parti				
			wang.	cie interactio				
				interactio				
				h with slip				
				boundary				
				condition,				
				Numerical				
				Mathemat				
				ICS:				
				Theory,				
				Methods				
				and				
				Applicatio				
				<i>ns</i> , 11				
				(2018),				
				pp.				
		1 1	1	1705 000	1	1		

2017	2017	LiLuo	An	31 Dec	No	Ves	Ves
2017	2017	Via a Ding	afficient	2017	110	105	105
14		Alao-Ping		2017			
54		wang*,	finite				
		and	element				
		Xiao-Chua	method				
		n Cai	for				
			simulation				
			of droplet				
			spreading				
			on a				
			topologica				
			lly rough				
			surface,				
			Journal of				
			Computati				
			onal				
			Physics				
			349				
			(2017),				
			pp.				
			233-252.				
2015	2017	LiLuo	A parallel	31 Dec.	No	Yes	Yes
2017	2017	LI Luo,	r i paranter	<i>c z z z z z z z z z z</i>	1.0		
2017	2017	Qian	finite	2017	1.0		
2017 J5	2017	Qian Zhang,	finite element	2017			
J5	2017	Qian Zhang, Xiao-Ping	finite element method	2017			
2017 J5	2017	Qian Zhang, Xiao-Ping Wang*,	finite element method for 3D	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and	finite element method for 3D two-phase	2017			
2017 J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua	finite element method for 3D two-phase moving	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains.	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i>	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i>	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i> <i>Computin</i>	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i> <i>Computin</i> g 72	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i> <i>Computin</i> g 72 (2017),	2017			
J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i> <i>Computin</i> <i>g</i> 72 (2017), pp.	2017			
2017 J5	2017	Qian Zhang, Xiao-Ping Wang*, and Xiao-Chua n Cai	finite element method for 3D two-phase moving contact line problems in complex domains, <i>Journal of</i> <i>Scientific</i> <i>Computin</i> g 72 (2017), pp. 1119-114	2017			

			Jie Du*,	Disconti	31 Dec,	No	Yes	Yes
2018	2017		Eric	nuous	2017			
			Chung,	Galerkin				
J6			Ming Fai	method				
			Lam and	with				
			Xiao-Ping	staggered				
			Wang	hvbridiza				
				tion				
				for a				
				class of				
				nonlinear				
				Stokes				
				equations				
				Journal				
				of				
				Scientific				
				Computin				
				g, 76				
				(2018),				
				pp.				
				1547–157				
				7.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place	_		to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress report)			
Julv/2018/St	A nonlinear	The 25th	2020	Yes	Yes	No
. John's,	elimination	International				
Newfoundla	preconditioned	Conformación				
nd, Canada	inexact Newton					
	algorithm for	Domain				
C1	steady state	Decomposition				
	incompressible	methods				
	flow problems					
	on 3D					
	unstructured					
	meshes, Li					
	Luo*,					
	Rongliang					
	Chen,					
	Xiao-Chuan					
	Cal, and David					
	E. Keyes,		1		1	

			-			
	A parallel	The 23th	31 Dec	No	Yes	Yes
July/2015/Je	two-phase flow	International	2017			
ju Island,	solver on	Conference on				
Korea	unstructured	Domain				
C^2	I i I uo*	Decomposition				
C2	Oian Zhang	methods				
	Xiao-Ping	methods				
	Wang, and					
	Xiao-Chuan					
	Cai					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Li Luo	PhD in Mathematics,	August 20, 2013	Graduation: Mar
	The Hong Kong		15, 2017
S1	University of Science &		
	Technology		

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

We collaborated with Prince of Wales Hospital Hong Kong, Beijing Tiantan Hospital, and Shenzhen Sun Yat-sen Cardiovascular Hospital to conduct high-precision and rapid simulation of blood flow in the human intracranial arteries, cardiovascular arteries, and abdominal arteries. The errors between calculated results and clinical measurement results are within 15%. We completed more than 200 cases of realistic arteries.

The two teams also organized several international workshops, which aim to bring together experts in this field from all over the world to discuss the latest development of high performance algorithms for PDEs and related applications.

- a) International Workshop for High Performance Numerical Algorithms and Applications, January 8 12, 2018, Sanya, China.
- b) "**Mini-symposium:** Parallel Algorithms for PDEs and Applications" at "20th IMACS World Congress", December 10-14, 2016, Xiamen University, China.
- c) "**Mini-symposium:** Mathematical and Numerical Modeling in Biomechanics" at "2019 International Congress on Industrial and Applied Mathematics", July 15-19, 2019, Valencia, Spain.
- d) "**Mini-symposium:** Research Progress on Parallel and Fast Algorithms for Partial Differential Equations" at "The 12th National Annual Conference on Computational Mathematics", July 31-Aug 4, 2019, Harbin, China.
- e) "**Mini-symposium:** High Performance Algorithms and Applications in Computational Biomechanics" at "14th World Congress of Computational Mechanics", July 19-24, 2020, Paris, France.

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	Journar	papers			(DI COLIPUIS
	publications		chapters		(Please specify)
No. of outputs arising directly from this research project [or conference]	6	2	0	0	

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)