

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Study of structure, interface and property modification of metal-cluster-decorated graphitic nanostructures

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Ning Wang	Prof. D.S. Su
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Physics Department, the	Institute for Metal Research,
Institution	Hong Kong University of	Chinese Academy of Science
	Science and Technology	
Contact Information	Email:phwang@ust.hk	Email: dssu@imr.ac.cn
Co-investigator(s)	N/A	N/A
(with title and		
institution)		

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01/01/2013		N/A
Project Completion date	31/12/2016		N/A
Duration (in month)	48		
Deadline for submission of Joint Completion Report	31/12/2017		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. In-situ study and understand the surface/interface structure of metal-cluster-decorated graphitic nanomaterials, in particular the interaction between metal clusters and graphitic nanostructures under different catalytic reaction (e.g., hydrogenation and CO oxidation) conditions.
 - 2. Investigate the structure and property modification of the graphitic nanostructures doped by B, N, O and P and the underlying mechanisms.

- 3. Elucidate the relationship between structure and property enhancement for chemically doped and metal-cluster-decorated graphitic nanostructures.
- 4. Combine the expertise of the two nanomaterials research teams at HKUST and IMR to contribute toward the important tasks in the study of metal clusters/graphitic nano-composite materials for potential application in catalysis.
- 5.2 Revised Objectives

Date of approval from the RGC: <u>N/A</u>

Reasons for the change: _____

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

- <u>Fast synthesis of monolayer/few-layer graphite by rapid thermal treatment (Nanoscale,</u> (2016) 8, 2594). We developed a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer/few-layer graphite on SiO2/Si substrates from solid carbon sources which are stable and useful for metal cluster supports for catalytic reactions.
- 2. Detection of interlayer interaction in few-layer graphene (Phys. Rev. B 92(2015) 075408). We demonstrated direct evidence of the surface relaxation phenomenon in few-layer graphene. Traditionally, the van der Waals interaction/interface between the carbon layers is thought to be insignificant. However, we suggest that the interlayer or interface interaction is an important factor in explaining experimental results, and the symmetry-breaking effects in graphene sublattice should not be negligible.
- 3. <u>A new method developed for fabrication of carbon nanotubes with Pd nanoparticles</u> <u>uniformly embedded in the inner carbon surfaces</u>. This Pd/C nanocomposite has a high recyclability in a liquid-phase Suzuki coupling reaction. This method can be extended as a general approach to prepare metal nanoparticles supported on carbon-nanotubes. The unique micro-structures of the Pd/C nanocomposite were systematically studied by high-resolution electron microscopy (CHEMCATCHEM 6 (2014) 2600; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 53 (2014) 2634).
- 4. <u>Reduction of nitrobenzene catalyzed by carbon materials</u> (Chinese Journal of Catalysis 35 (2014) 201403033). We first characterized the nano carbon structure and N2 adsorption-desorption. We evidenced that carbon was an efficient catalyst for nitrobenzene reduction. The carbonyl group played an important role, while the carboxylic group and anhydride adversely affected the reaction.

NSFC/RGC 8 (Revised 10/15)

- 5. Defect states in single-layer graphene decorated by Ag clusters (Scientific Reports 3(2013)2041), metal oxide and /or OH resonant impurities (APPLIED PHYSICS LETTERS 102, 203103 (2013)). We demonstrated that single-layer graphene decorated with a high density of Ag adatoms or clusters displays unconventional phenomenon of negative quantum capacitance. The Ag adatoms/clusters act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point. Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. We uncovered the interaction effects between resonant states (hydrogen and OH introduced by in-situ electron beam irradiation) and Landau levels by varying the applied magnetic field. Negative compressibility was detected in graphene/black phosphorus interfaces (PHYS. REV. B 93, 035455 (2016)). The interaction mechanisms and enhancement of the negative compressibility in disordered graphene were proposed.
- 6. Electronic properties of mono/few-layer graphite modulated by metal oxides. In addition to above metal impurity effects, we also found that metal oxides, such as Y2O3 and ZnO largely modify the properties of mono/few-layer graphite. We determined the electronic property modification of single/few-layer graphite by ultrathin Y2O3 (Nanoscale, (2013), 5, 1116). We concluded based on both DC transport and AC capacitance measurements that the broadening of Landau levels was mainly due to the additional charged impurities and inhomogeneity of carriers induced by Y2O3 ultrathin layers. We probed an efficient charge transfer between ZnO quantum dots and graphene which involve oxygen molecules from air. The electrical response of the ZnO/graphene devices to UV light and photoconductive gain was thus greatly enhanced (Small. (2013) 9(18), 3031-6).

All these property modification effects on nano-carbon structures are important and very useful for understanding their functions in chemical sensing and catalytic reactions.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Through this collaborative research, both teams from HKUST and IMR have gained valuable knowledge and experience on fabricating and controlling the microstructures of nano-carbon decorated with metal clusters or metal oxide clusters. Some of these nano composites show promising properties for chemical catalytic reactions. We plan to continue our collaboration research along the same direction, particularly in the study of dynamic process of single atom catalysts and their stability using the newly installed super-resolution scanning transmission electron microscope at HK UST. A research proposal targeting on the stability of single-atom catalysts supported on atomically-thin layered structures has been submitted to the Research Grants Council (RGC) of Hong Kong.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Having high aspect ratios, huge surface areas and high thermal stability, graphitic nanostructures containing atomic metal clusters are promising materials for chemical

sensing and catalytic reactions. The outcome of this collaborative research provided knowledges for better understanding (1) the structurally or chemically induced defects in metal cluster decorated nano-carbon structures; (2) the metal-carbon interaction; and (3) the electrical and chemical property modification of graphitic nanostructures by metal clusters and other chemical dopants. We have obtained valuable experimental data for elucidating the relationship between structure and property modification for metal-cluster-decorated and element-doped graphitic nanostructures. The results are highly relevant to fabricating efficient nano-graphitic composites for technological applications in chemical sensing and catalytic reactions.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's *funding support by quoting the specific grant reference.*)

The Late	est Status of	Publicat	ions	Author(s)	Title and	Submitted	Attach	Acknowle	Accessible
Year of	Year of	Under	Under	(bold the authors	Journal/Book	to RGC	ed to	dged the	from the
publication	Acceptance	Review	Prepar	belonging to the	(with the	(indicate the	this	support of	institution
	(For paper		ation	project teams	volume, pages	year ending	report	this Joint	al
	accepted			<u>and </u> denote the	and other	of the	(Yes or	Research	repository
	but not yet		(optio	corresponding	necessary	relevant	No)	Scheme	(Yes or
	published)		nal)	author with an	publishing	progress		(Yes or No)	NO)
				asterisk*)	details	report)		·	
				a www.a	specified)	2012	N.T.	X 7	* 7
				Guo W, Xu S,	"Oxygen-Ass	2013	N	Y	Y
2013				Wu Z, Wang	1sted Charge				
				N, Loy MM,	Transfer				
				Du S*.	Between				
					ZnO				
					Quantum				
					Dots and				
					Graphene",				
					Small.				
					(2013) 9(18),				
					3031-6.				
2013				X. L. Chen, L.	"Negative	2013	Ν	Y	Y
				Wang, W. Li,	compressibili				
				Y. Wang, Y.	ty observed				
				H. He, Z. F.	in graphene				
				Wu, Y. Han,	containing				
				M. W. Zhang,	resonant				
				W. Xiong,	impurities",				
				and N. Wang*	APPLIED				
					PHYSICS				
					LETTERS				
					102, 203103				
					(2013).				

		r						
2013			Lin Wang,	"Negative	2013	Ν	Y	Y
			Yang Wang,	Quantum				
			Xiaolong	Capacitance				
			Chen, Wei	Induced by				
			Zhu, Chao	Midgap				
			Zhu, Zefei Wu,	States in				
			Yu Han,	Single-layer				
			Mingwei	Graphene",				
			Zhang, Wei Li,	Scientific				
			Yuheng He,	Reports				
			Wei Xiong,	3(2013)2041.				
			Kam Tuen					
			Law,					
			Dangsheng Su					
			& Ning Wang*					
2013			Xiaolong	"Electron-El	2013	Ν	Y	Ν
			Chen, Lin	ectron				
			Wang, Wei Li,	Interactions				
			Yang Wang,	in Monolayer				
			Zefei Wu,	Graphene				
			Mingwei	Quantum				
			Zhang, Yu	Capacitors",				
			Han, Yuheng	Nano				
			He, and	research. v.				
			Ning Wang*	6, (8), 2013,				
			0 0	p. 619-626.				
2013			Lin Wang,	"Modificatio	2013	N	Y	Ν
			Xiaolong	n of				
			Chen, Yang	electronic				
			Wang, Zefei	properties of				
			Wu, Wei Li,	top-gated				
			Yu Han,	graphene				
			Mingwei	devices by				
			Zhang,	ultrathin				
			Yuheng He,	yttrium-oxid				
			Chao Zhu,	e dielectric				
			Kwok Kwong	layers",				
			Fung and Ning	Nanoscale,				
			Wang*	(2013), 5,				
				1116.				
2014			Shuchang Wu.	"Reduction	2014	N	Y	Y
			Guodong Wen.	of				
			Xianmo Gu,	nitrobenzene				
			Bingsen	catalyzed by				
			Zhang.	carbon				
			Bingwei	materials",				
			Zhong, Ning	Chinese				
			Wang and	Journal of				
			Dang	Catalysis 35				
			Sheng Su*	(2014)				
				201403033 -				
				3.				

2014		Yang Wang,	"Side-gate	2014	Ν	Y	Y
		Xiaolong	modulation				
		Chen,	effects on				
		Weiguang Ye,	high-quality				
		Zefei Wu, Yu	BN-Graphen				
		Han, Tianyi	e-BN				
		Han, Yuheng	nanoribbon				
		He, Yuan Cai,	capacitors",				
		and Ning	Applied				
		Wang*	Physics				
		U	Letters: 105,				
			243507				
			(2014).				
2014		Zefei Wu,Yu	"Semimetalli	2014	Ν	Y	
		Han, Rui	c-to-metallic				Ν
		Huang,	transition and				
		Xiaolong	mobility				
		Chen, Yanqing	enhancement				
		Guo, Yuheng	enabled by				
		He,	reversible				
		Wei Li, Yuan	iodine				
		Cai and Ning	doping of				
		Wang*	graphene",				
		e	Nanoscale,				
			2014, 6,				
			13196.				
2014		 Lin Wang,	"Detection of	2014	N	Y	Y
		Xiaolong	resonant				
		Chen, Wei	impurities in				
		Zhu, Yang	graphene by				
		Wang, Chao	quantum				
		Zhu, Zefei Wu,	capacitance				
		Yu Han.	measurement				
		Mingwei	"				
		Zhang, Wei Li.	PHYSICAL				
		Yuheng He.	REVIEW B				
		and Ning	89,075410				
		Wang*	(2014).				
		6					

2014		H.Y. Liu, L.Y. Zhang, N. Wang, D.S. Su*	"Palladium Nanoparticle s Embedded in the Inner Surfaces of Carbon Nanotubes: Synthesis, Catalytic Activity, and Sinter Resistance", ANGEWAN DTE CHEMIE-IN TERNATIO NAL EDITION 53 (2014) 2634-12638.	2014	Ν	Y	Y
2014		L.Y. Zhang, G.D. Wen, H.Y. Liu, N. Wang, D.S. Su*	"Preparation of Palladium Catalysts Supported on Carbon Nanotubes	2014	N	Y	N
			by an Electrostatic Adsorption Method", CHEMCAT CHEM Volume: 6 (2014) 2600-2606.				
2015		Yu Han, Zefei Wu, Shuigang Xu, Xiaolong Chen, Lin Wang, Yang Wang, Wei Xiong, Tianyi Han, Weiguang Ye, Jiangxiazi Lin, Yuan Cai, K. M. Ho, Yuheng He, Dangsheng Su, Ning Wang*	"Probing defect-induce d midgap states in MoS2 through graphene-Mo S2 heterostructu res", Advanced Materials Interfaces 2 (2015) 1500064.	2017	Y	Y	N

2015	Zefei Wu, Yu Han,Wei Zhu, Mingquan He, Shuigang Xu, Xiaolong Chen, Weiguang Ye, Tianyi Han, Huanhuan Lu, Rui Huang, Lin Wang, Yuheng He, Yuan Cai, Rolf Lortz, Ning Wang*	"Detection of Interlayer Interaction in Few-layer Graphene", Phys. Rev. B 92 (2015) 075408.	2017	Y	Y	Y
2016	Z.F. Wu, Y.Q. Guo, Y.Z. Guo, R. Huang, S.G. Xu, J. Song, H.H. Lu, Z.X. Lin, Y. Han, H.L. Li, T.Y. Han, J. Lin, Y.Y. Wu, G. Long, Y. Cai, C. Cheng, D.S. Su, J. Robertsonc and Ning Wang*	"A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment", Nanoscale, (2016), 8, 2594.	2017	Y	Y	N
2016	Y.Y. Wu, X.L. Chen, Z.F. Wu, S.G. Xu, T.Y. Han, J. Lin, B. Skinner, Y. Cai, Y.H. He, C. Cheng, and N. Wang*	"Negative compressibili ty in graphene-ter minated black phosphorus heterostructu res", PHYSICAL REVIEW B 93, 035455 (2016).	2017	Y	Y	Y

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/	Title	Conference Name	Submitted to	Attached	Acknowledged
Place			RGC	to this	the support of
			(indicate the	report	this Joint
			year ending of	(Yes or No)	Research
			the relevant		Scheme
			progress		(Yes or No)
			report)		·
August/2013	Resonant impurities and	9th Cross-Strait	2013	No	Yes
/Hailar	negative quantum	Workshop on "Nano			
	capacitance in single-layer	Science and			
	graphene	Technology"			
December/2	Disorder and resonant states	Interdisciplinary	2013	No	Yes
013/Hong	in single layer graphene	Nanoscience for			
Kong	detected by quantum	Energy, Life and			
C	capacitance measurement.	Environment			
	1	(INELE2013)			
		×			
December/2	Probing the electron states	11th Cross-Strait	2014	Yes	Yes
014/Hong	and metal-insulator	Workshop on "Nano			
Kong	transition mechanisms in	Science and			
_	atomically thin MoS2.	Technology"			
July/2015/Si	Dimension-controlled	ICMAT2015 &	2015	Yes	Yes
ngapore	synthesis of ZnO	IUMRS-ICA2015,			
	nanostructures and their	Materials Research			
	novel properties for	Society, Singapore			
	potential applications.				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/ graduation
Z.F. Wu	PhD in Physics	01/09/2010	August 2014
Y. Han	PhD in Physics	01/09/2011	August 2015
Y.Y. Wu	M. Phil. in Physics	01/09/2014	June 2016

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

No.