The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Dynamical Network Mechanisms of Information Processing in Neural Systems 神經系統處理信息的動態網絡機制

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. K. Y. Michael Wong	Prof. Si Wu
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Physics, HKUST	State Key Laboratory of
Institution		Cognitive Neuroscience and
		Learning, Beijing Normal
		University
Contact Information	phkywong@ust.hk	wusi@bnu.edu.cn
Co-investigator(s)	Prof. Changsong Zhou, Hong	Prof. Zhangang Han, Beijing
(with title and	Kong Baptist University	Normal University
institution)		

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 January 2013		
Project Completion date	31 December 2016		
Duration (in month)	48 months		
Deadline for Submission of Completion Report	31 December 2017		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- 1. To study how short-term plasticity among the synapses of neurons affects the dynamical behaviors of neuronal networks, and contributes to the processing of motional information.
- 2. To study how positive and negative feedbacks among the different layers of neural circuit modulate the network responses to external inputs, and contribute to the extraction of dynamical information from inputs.
- 3. To study how the intrinsic dynamics of complex neuronal networks is able to encode and store temporal information.

- 4. To study how large-scale hierarchical modular neuronal networks maintain local criticality and global stability, and hence optimize their computational capabilities involving spatiotemporal patterns.
- 5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

Objective 1:

- 1) **Dynamical effects of short-term plasticity [8,1,10,11,5].** We discovered that short-term plasticity can produce a rich spectrum of responses to external stimuli and thus have high potentials for temporal encoding, as demonstrated in resolution enhancement modeling. Other effects of short-term synaptic interactions, dynamical learning rules and multiplicative integration were studied, yielding excellent agreement with experiments.
- 2) **Delay compensation for real-time tracking [7,9,6]**. We found that dynamical synapses can compensate time delays that are ubiquitous in neural signal transmission and processing, enabling the system to perform real-time tracking of motional information. The general behavior is unified by fluctuation-response relations in statistical physics.
- 3) Neural computation in a dynamical system with multiple time scales [18]. We studied how a neural system can orchestrate its rich short-term dynamics, with properly combined short-term facilitation, short-term depression, and spike-frequency adaptation, to realize seemingly contradictory computational requirements in different time scales.
- 4) **Short-term plasticity supporting dynamical information encoding [3,4]**. We showed that short-term plasticity in electrical synapses enables a neural system to respond fast to a novel stimulus and save energy to retain the information of the invariant stimulus after adaptation. It reconciles the long-standing debate in the field on rate versus correlation code.
- 5) A model for asynchronous neurotransmitter release [10]. Based on the experimental data, we proposed a phenomenological model for asynchronous release of neurotransmitters at synapses. This is an important supplement to the conventional short-term plasticity model.
- 6) A canonical model for neural information representation [19].

Objective 2:

- 1) **Role of feedback loops [8].** We found that inhibitory feedback loops in multilayer networks influence network dynamics in the same way as short-term synaptic depression and spike-frequency adaptation do, unified by fluctuation-response relations.
- 2) **Modular neural networks [17,12].** We proposed a modular architecture for processing multisensory information. To integrate or segregate disparity-dependent information, we proposed a model with congruent and opposite reciprocal feedbacks between the modules.
- 3) **Encoding of multisensory prior [21].** We discovered how the joint multisensory prior is stored in the reciprocal feedbacks of the modular networks.

Objective 3:

- 1) **Temporal rhythm encoding in a scale-free network [2].** We proposed that a large scale-free neural network can encode the rhythm information of external inputs by employing simple template-matching, that is, in response to an external input, the network automatically selects a loop whose size matches the period of the input.
- 2) **Experimental relevance [3,4,16].** We found that in encoding a prolonged stimulation in bullfrogs' retina, the neural system may utilize concerted, but less active, firings of neurons to encode information, and dynamical electric synapses play a role. We also built a model describing the propagating neural activity during saccades in monkeys' eye.

Objective 4:

- 1) Contradiction between SOC and complex oscillations are reconciled in E-I balanced module networks [13]. Furthermore, the dynamics support sensitive response of the resting brain states to external stimuli, consistent with our collaborator's monkey experiments.
- 2) **Co-organized neural information representation is cost-efficient [20].** We showed that multilevel cortical activity, including irregular firing of individual neurons, critical avalanches and oscillations can co-organize in a broad biologically realistic parameter region of modular networks and implies a fundamental principle of cost-efficiency.
- 3) **Interaction of firing patterns with synaptic plasticity [14,15].** We studied how spatial and temporal structures in the firing patterns in the multilevel cortical activity influences the diffusion of synaptic weights in the presence of synaptic plasticity, using firing pattern generation methods and the complex dynamical patterns in the E-I balanced neural networks.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

1) Neural Circuits with Feedbacks

We have studied modular networks processing multisensory information. For networks with two or more modules, the modules compete with each other to yield the optimal output consistent with the prior distribution of information and the likelihood of the actual input. We propose to implement an optimal competition mechanism for this purpose. We will further consider the optimal network structure for time-dependent inputs. Next we will consider how features of the input information can be extracted from the dynamics of networks with multiple layers. This will be useful in the design of deep neural networks in artificial intelligence.

2) Hierarchical Modular Networks

We propose to further study the structure-function relationship in the human brain connectome about the unique features of hierarchical modular organization and critical states. Our preliminary results showed that hierarch modular organization and the critical states together maximize the functional diversity of the brain.

3) Cost-Efficient Computing

Currently there is a strong interest in developing brain inspired computing. The hierarchical modular network structure and cost-efficient critical neural dynamics may be used to develop efficient computing with low costs.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Our project obtained many successful results in the neural processing of dynamical information; the more representative ones are described below. 1) When the brain processes information that changes with time, delays are pervasive due to the time taken to transmit and process neural signals. We proposed an effective mechanism to achieve real-time tracking by utilizing the property that neurons become desensitized after prolonged firing. 2) When the brain receives information from different channels, it needs to integrate or segregate them depending on the disparity of the different inputs. We proposed a model with modules congruently or oppositely connected, inspired by the discovery of congruent and opposite cells in the brain. 3) It is mysterious that the neural system can memorize rhythms of duration much longer than the time scale of neural dynamics. We discovered that networks with scale-free connectivity and hard-to-activate hub neurons contain loops formed by low-degree neurons that can process rhythms with matching periods. 4) Neural systems consist of firing patterns resembling avalanches, which do not have characteristic time scales. It appears contradictory that they co-exist with finite-scale oscillations. We showed that they are reconciled in finite-sized modular networks in which synaptic excitations and inhibitions are balanced.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's *funding support by quoting the specific grant reference.*)

The La Publica		atus o	f		(pə	ır ort)		int	
Year of publication	Year of Acceptance (For paper accepted but not yet published)	Under Review	Under Preparation (optional)	Author(s) (bold the authors belonging to the project teams and denote the corresponding author with an asterisk*)	Title and Journal/ Book (with the volume, pages and other necessary publishing details specified)	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
2013 [1]				0	Resolution enhancement in neural networks with dynamical synapses, Front Comput Neurosci 7, 73 (2013).	2013	No	Yes	Yes
2013 [2]					Long-Period Rhythmic Synchronous Firing in a Scale-Free Network. Proc Natl Acad Sci USA 110 , E4931-4936 (2013).	2017	Yes	Yes (NSFC side)	No
2013 [3]					Shifted Encoding Strategy in Retinal Luminance Adaptation: from Firing Rate to Neural Correlation, J Neurophysiol 110 , 1793-1803 (2013).	2017	Yes	Yes (NSFC side)	No
2013 [4]				Xiao Lei, Zhang Danke, Li Yuanqing, Liang Peiji* and Wu Si*	Adaptive Neural Information Processing with Dynamical Electrical Synapses, Front Comput Neurosci 7, 36 (2013).	2017	Yes	Yes (NSFC side)	No
2013 [5]				Danke Zhang, Yuanqing Li, Malte J Rasch*, Si Wu*	Nonlinear Multiplicative Dendritic Integration in Neuron and Network Models, Front Comput Neurosci 7, 56 (2013).	2017	Yes	Yes (NSFC side)	No
2013 [6]				C. C. Alan Fung*, K. Y. Michael Wong, Hongzi Mao, and Si Wu	Fluctuation-Response Relation Unifies Dynamical Behaviors in Neural Fields, Phys Rev E 92 , 022801 (2015).		Yes	Yes	Yes
2014 [7]				Xia, C. C. Alan	Spike Frequency Adaptation Implements Anticipative Tracking in Continuous Attractor Neural Networks, Advances in Neural Information Processing Systems 27 , Z. Ghahramani et al. (eds), 505-513 (2014).	2014	No	Yes	Yes
2015 [8]				He Wang*, Kin Lam, C. C. Alan Fung, K. Y. Michael Wong, and Si Wu	A Rich Spectrum of Neural Field Dynamics in the Presence of Short-Term Synaptic Depression, Phys Rev E 92 , 032908 (2015).	2017	Yes	Yes	Yes

2015	C. C. Alan Fung*	Spontaneous Motion on	2017	Yes	Yes	No
[9]	and S. Amari	Two-Dimensional Continuous Attractors, Neural Comput 27 507-547 (2015).				
2015 [10]		A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release, Front Comput Neurosci 9 , 153 (2015).	2017	Yes	Yes (NSFC side)	No
2015 [11]	Gang Hu, Si Wu*, Malte J. Rasch*	Different propagation speeds of recalled sequences in plastic spiking neural networks, New J Phys 17 , 035006 (2015).	2017	Yes	Yes (NSFC side)	No
2016 [12]	Wenhao Zhang*, He Wang, K. Y. Michael Wong, and Si Wu	"Congruent" and "Opposite" Neurons: Sisters for Multisensory Integration and Segregation, Advances in Neural Information Processing Systems 29 , D. D. Lee et al. (eds), 3180-3188 (2016).	2017	Yes	Yes	Yes
2016 [13]	Guang , Mingsha Zhang*, K.Y	Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems, Phys Rev Lett 116 , 018101 (2016).	2017	Yes	Yes	Yes
2016 [14]	Zedong Bi* and Changsong Zhou*	Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs, Front Comput Neurosci 10 , 14 (2016).	2017	Yes	Yes	No
2016 [15]	Zedong Bi* and Changsong Zhou*	Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks, Front Comput Neurosci 10 , 83 (2016).	2017	Yes	Yes	No
2016 [16]	Xiaolan Wang, C.C. Alan Fung, Shaobo Guan, Si Wu*, Michael E. Goldberg, Mingsha Zhang*	Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area, Neuron 90 , 400-409 (2016).	2017	Yes	Yes	No
2016 [17]	U	Decentralized Multisensory Information Integration in Neural Systems, J Neurosci 36 , 532-547 (2016).	2017	Yes	Yes (NSFC side)	No
2016 [18]	Yuanyuan Mi, Xiaohan Lin,and Si Wu*	Neural Computations in a Dynamical System with Multiple Time Scales, Front Comput Neurosci 10 , 96 (2016).	2017	Yes	Yes (NSFC side)	No
2016 [19]	Si Wu*, K. Y. Michael Wong, C. C. Alan Fung, Yuanyuan Mi, and Wenhao Zhang	Continuous Attractor Neural Networks: Candidate of a Canonical Model for Neural Information Representation, F1000Research 2016, 5(F1000 Faculty Rev):156 (2016).	2017	Yes	Yes (NSFC side)	No

2017 [20]	Haijun Zhou, and Changsong Zhou*	Co-emergence of Multi-scale Cortical Activities of Irregular firing, Oscillations and Avalanches Achieves Cost-efficient Information Capacity, PLoS Comput Biol 13 , e1005384 (2017).	2017	Yes	Yes	No
2017 [21]	He Wang*, Wenhao Zhang, K. Y. Michael Wong, and Si Wu	How the Prior Information Shapes Neural Networks for Optimal Multisensory Integration, Lecture Notes in Computer Science 10262 , F. Cong et al. (eds), 128-136 (2017).	2017	Yes	Yes	Yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (<i>indicate the year</i> ending of the relevant progress report)		Acknowledged the support of this Joint Research Scheme (<i>Yes or No</i>)	
June 2013 Hong Kong [22]	Multiple Representations in Neural Fields with Dynamical Synapses	The 16th Conference of the Physical Society of Hong Kong	2013	No	Yes	No
July 2013 Hong Kong [23]	Short-Term Synaptic Depression Enriches Responses to Stationary Stimuli in Continuous Attractor Neural Networks	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013	No	Yes	No
July 2013 Hong Kong [24]	Short-Term Synaptic Depression Enhances the Resolution of Population Codes	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013	No	Yes	No
July 2013 Hong Kong [25]	Continuous Attractor Neural Networks, Short-Term Synaptic Depression, and Delay Compensation	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013	No	Yes	No
July 2013 Hong Kong [26]	Trade-off between Structural Cost and Functional Value in the Connectivity and Activity of Neural Networks	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013		Yes	No
July 2013 Hong Kong [27]	Cost-Efficient Dynamical States Self-Organized by Balanced Excitation/Inhibition in Local Neuronal Networks	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013		Yes	No
July 2013 Hong Kong [28]	Mining Sequential Brain Cognitive Activity Components by Residue Iteration Decomposition (RIDE)	HKUST IAS Program on Statistical Physics and Computational Neuroscience	2013	No	Yes	No

July 2013	Formation of the Neural Networks	HKUST IAS Program on	2013	No	Yes	No
Hong Kong	under Multiple Constraints	Statistical Physics and				
[29]		Computational Neuroscience				
July 2013	Intrinsic Behavior Determines	XXV IUPAP International	2013	No	Yes	No
Seoul [30]	Responses to Stimuli in Neural	Conference on Statistical Physics				
	Fields: Delay Compensation	(STATPHYS 25)				
July 2013	The Formation of Neural	Invited talk at the 1 st International	2013	No	Yes	No
Beijing [31]	Connectivity under Multiple	Workshop on Neuroimaging and				
	Constraints	Brain Connectum				
August 2013	Delay Compensation in Neural	Keynote Speech, Workshop on	2013	No	Yes	No
Beijing [32]	Fields: Intrinsic Behavior	Intelligence Science (WIS 2013),				
	Determines Tracking Performance	IJCAI 2013 Workshops				
September	Less is More: Cost-Efficient	Invited talk, International	2013	No	Yes	No
2013 Xiamen	Dynamical Modes in Balanced	Conference "Emergent and				
[33]	Neural Networks	Adaptive Behaviors in Soft				
		Matter and Living Systems"				
December	Reciprocally Coupled Local	26th Annual Conference on	2017	Yes	Yes	No
2013 Lake	Estimators Implement Bayesian	Neural Information Processing				1
Tahoe [34]	Information Integration	Systems (NIPS 2013)				1
L- 1	Distributively					1
June 2014	Fluctuation-response Relation in	17th Conference of the Physical	2014	No	Yes	No
Hong Kong	Neural Field Models	Society of Hong Kong				
[35]		~				
June 2014	General Relation between Intrinsic	Invited speech, Symposium on	2014	No	Yes	No
Beijing [36]	Behavior and Response	Neural Biology and Networks,	2011	110	105	110
beijing [50]	Performance in Neural Fields and	8th IUPAP International				
	Its Implications to Delay	Conference on Biological				
	Compensation	Physics				
June 2014	How Your Brain Wanders	Invited speech, 12th Taiwan	2014	No	Yes	No
Taipei [37]	Determines How Your Brain	International Symposium on	2014	110	105	110
	Tracks	Statistical Physics and Complex				
	Tueks	Systems				
November	A Model of Perisaccadic Receptive	Neuroscience 2014	2014	No	Yes	No
2014	Field Remapping in LIP Predicts a	Neuroscience 2014	2014	110	105	140
Washington	Moving Wave of Activity across					
DC [38]	the Cortex					
December	Cost-Efficiency in Neural	International Workshop on	2014	No	Yes	No
2014 Hong	Presentations	Computational Science and	2014	110	105	110
Kong [39]	resentations	Engineering (IWCSE 2014)				
December	A Synaptical Story of Persistent	27th Annual Conference on	2017	Vac	Yes	No
2014 Montreal	Activity with Graded Lifetime in a	Neural Information Processing	2017	105	105	INU
	Neural System	Systems (NIPS 2014)				
[40]		Systems (1411 S 2014)				
December	Spike Frequency Adaptation	27th Annual Conference on	2017	Vac	Yes	No
2014 Montreal	Implements Anticipative Tracking	Neural Information Processing	2017	105	1 05	110
	in Continuous Attractor Neural	÷				1
[41]		Systems (NIPS 2014)				1
December	Networks	Invited appearly 14th	2014	NL-	Var	NT-
December	Physical Principles Unifying	Invited speech, 14th	2014		Yes	No
2014 Okazaki	Dynamical Behaviors in Neural	Japan-China-Korea Joint				
[42]	Fields	Workshop on Neurobiology and				
		Neuroinformatics, (NBNI2014)	0	x 7		<u> </u>
June 2015	Emergence of Complex Dynamics	18th Conference of the Physical	2017	Yes	Yes	No
Hong Kong	in Neural Fields with Short-Term	Society of Hong Kong				
[43]	Synaptic Depression		1	1	1	

June 2015	The Dynamics of Two-Layer	18th Conference of the Physical	2017	Yes	Yes	No
Hong Kong	Continuous Attractor Neural	Society of Hong Kong				
[44]	Network Model With Moving					
	Stimulus					
December	The Dynamics of Two-Layer	2015 International Symposium on	2017	Yes	Yes	No
2015 Hong	Continuous Attractor Neural	Nonlinear Theory and its				
Kong [45]	Network Model With Moving	Applications (NOLTA 2015)				
-	Stimulus					
December	How Short-Term Synaptic	2015 International Symposium on	2017	Yes	Yes	No
2015 Hong	Depression Reshapes Dynamics of	Nonlinear Theory and its				
Kong [46]	Continuous Attractor Neural	Applications (NOLTA 2015)				
	Networks					
December	Modelling Optical Illusions from	2015 International Symposium on	2017	Yes	Yes	No
2015 Hong	Radially Periodic Images	Nonlinear Theory and its				
Kong [47]		Applications (NOLTA 2015)				
December	Sensitive Stochastic Oscillation in	2015 International Symposium on	2017	Yes	Yes	No
2015 Hong	Self-Organized Critical States of	Nonlinear Theory and its				
Kong [48]	Small Neural Systems	Applications (NOLTA 2015)				
December	A Decentralized Architecture for	2015 International Symposium on	2017	Yes	Yes	No
2015 Hong	Multisensory Neural Information	Nonlinear Theory and its				
Kong [49]	Integration	Applications (NOLTA 2015)				
December	Cost-Efficiency in Neural	Special Session "Nonlinear Data	2017	Yes	Yes	No
2015 Hong	Presentations	Analysis and Related Topics",				
Kong [50]		International Symposium on				
		Nonlinear Theory and				
		Application (NOLTA 2015),				
December	Stochastic Oscillation in	Special Session "Information and	2017	Yes	Yes	No
2015 Hong	Self-Organized Critical States of	Dynamics of Complex				
Kong [51]	Small Systems: Sensitive Resting	Networks", International				
	State in Neural Systems	Symposium on Nonlinear Theory				
		and Application (NOLTA 2015),				
March 2016	Distributed multisensory	American Physical Society	2017	Yes	Yes	No
Baltimore [52]	integration in a recurrent network	March Meeting				
	model through supervised learning					
June 2016	Application of the Two-Layer	-	2017	Yes	Yes	No
Hong Kong	Continuous Attractor Neural	Society of Hong Kong				
[53]	Network Model to Visual-Auditory					
	Sensory Illusion					
June 2016	Temporal Integration in Layered	19th Conference of the Physical	2017	Yes	Yes	No
Hong Kong	Networks with Short-Term	Society of Hong Kong				
[54]	Synaptic Depression					
December	"Congruent" and "Opposite"	29th Annual Conference on	2017	Yes	Yes	No
2016	Neurons: Sisters for Multisensory	Neural Information Processing				
Barcelona [55]	Integration and Segregation	Systems (NIPS 2016)	2017	x 7	x 7	
December	Temporal Integration in Modular	9th Dynamics Days Asia-Pacific	2017	Yes	Yes	No
2016 Hong	Neural Networks with Short-Term	(DDAP9)				
Kong [56]	Synaptic Plasticity		2017	x 7	x 7	
December	How the Prior Shapes Neural	9th Dynamics Days Asia-Pacific	2017	Yes	Yes	No
2016 Hong	Structure for Optimal Multisensory	(DDAP9)				1
Kong [57]	Integration		2017	N 7	X 7	
December	Modeling Visual-Auditory Sensory	9th Dynamics Days Asia-Pacific	2017	Yes	Yes	No
2016 Hong	Illusion	(DDAP9)				1
Kong [58]			001-		.	<u> </u>
December	Neural Structure for Integrating	16th Japan-China-Korea Joint	2017	Yes	Yes	No
2016 Hong	Visual Signals with Those of Other	Workshop on Neurobiology and				
Kong [59]	Modalities	Neuroinformatics (NBNI 2016)	1	1	1	1

December	Co-Emergence of Multi-scale	16th China-Japan-Korea Joint	2017	Yes	Yes	No
2016 Hong Kong [60]	Cortical Activities of Irregular firing, Oscillations and Avalanches Achieves Cost-efficient Information Capacity	workshop on Neurobiology and Neuroinformatics (NBNI 2016),				
March 2017 New Orleans [61]	How the Prior Information Shapes Couplings in Neural Fields Performing Optimal Multisensory Integration	American Physical Society March Meeting	2017	Yes	Yes	No
March 2017 New Orleans [62]	Congruent and Opposite Neurons as Partners in Multisensory Integration and Segregation	American Physical Society March Meeting	2017	Yes	Yes	No
April 2017 Hangzhou [63]	Co-Emergence of Multi-scale Cortical Activities of Irregular firing, Oscillations and Avalanches Achieves Cost-efficient Information Capacity	Forum on Cognitive Science Frontier	2017	Yes	Yes	No
June 2017 Sapporo [64]	How the Prior Information Shapes Neural Networks for Optimal Multisensory Integration	14th International Symposium on Neural Networks (ISNN 2017)			Yes	No
June 2017 Hong Kong [65]	Cross-Talks between Neural Pathways for Optimal Multisensory Information Processing	Best Student Poster Award, 20th Conference of the Physical Society of Hong Kong	2017	Yes	Yes	No
June 2017 Hong Kong [66]	Temporal Integration in Modular Neural Networks with Short-Term Synaptic Plasticity	20th Conference of the Physical Society of Hong Kong	2017	Yes	Yes	No
July 2017 Beijing [67]	Neural Systems Integrating Information from Different Channels	Invited talk, 9th Joint Meeting of Chinese Physicists Worldwide	2017	Yes	Yes	No
October 2017 Wuhan [68]	How Neural Systems Fuse Information from Different Channels	Invited talk, International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS 2017)	2017	Yes	Yes	No
November 2017 Guangzhou [69]	Encoding Multisensory Information in Modular Neural Networks	24th International Conference on Neural Information Processing (ICONIP 2017)	2017	Yes	Yes	No
November 2017 Guangzhou [70]	The Dynamics of Bimodular Continuous Attractor Neural Networks with Moving Stimuli	24th International Conference on Neural Information Processing (ICONIP 2017)	2017	Yes	Yes	No
November 2017 Guangzhou [71]	Learning a Continuous Attractor Neural Network from Real Images	24th International Conference on Neural Information Processing (ICONIP 2017)	2017	Yes	Yes	No

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation
Ouyang, Guang	PhD	September 2009	August 2013
Fung, Chi Chung Alan	PhD	September 2010	August 2013
Wang, He	MPhil	September 2011	September 2013
Xia, Yan	MSc	September 2012	July 2015
Wang, Tao	MSc	September 2012	July 2015

NSFC/RGC 8 (Revised 10/15)

Zhang, Wenhao	PhD	September 2011	July 2016
Wang, He	PhD	October 2013	August 2017
Leung, Kai Yin	MPhil	September 2015	August 2017
Xiaohan Lin	MSc	September 2015	July 2018
Yan, Min	PhD	September 2013	August 2018

11. Other impact (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.)

Through the research project on self-organized criticality in neural networks, close collaborations have been established with experimental neuroscientist Prof. Mingsha Zhang at Beijing Normal University and statistical physicist Prof. Haijun Zhou at the Institute of Theoretical Physics, the Chinese Academy of Sciences.