The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Hybrid structures of low-dimensional functional oxide thin films and 2D semiconductors: design, fabrication, and interface control 低維功能氧化物薄膜與二維半導體材料復合結構的設計制備與界面調控研究

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof Jiannong WANG	Prof Hong WANG
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of	School of Electronic and
Institution	Physics/HKUST	Information Engineering /
		Xi'an Jiaotong University
Contact Information	phjwang@ust.hk	hwang@xjtu.edu.cn,
		wangh6@sustech.edu.cn
Co-investigator(s)		Dr. Chunrui MA / Xi'an
(with title and		Jiaotong University
institution)		

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 Jan 2017		
Project Completion date	31 Dec 2020		
Duration (in month)	48		
Deadline for Submission of Completion Report	31 Dec 2021		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - Based on ferromagnetic (La_{0.7}Sr_{0.3}MnO₃, YIG, Fe₃O₄) thin films, we will form hybrid structures with new 2D materials such as topological insulators (Bi₂Se₃, Bi₂Te₃), layered semimetal/metal (graphene, WTe₂, NiCo₂O₄, etc.) and semiconducting TMDCs (MoS₂, MoSe₂, WS₂, WSe₂) using the chemical vapor deposition (CVD) over-growth or mechanical transfer method. Our goal is to achieve high spin injection and we will explore the spin Hall or inverse spin Hall effect in these structures.

- 2. We will grow ferroelectric (BaTiO₃, etc.) and piezoelectric (PZT, etc.) thin films and then form hybrid structures with new 2D materials such as graphene, semiconducting TMDCs (MoS₂, MoSe₂, WS₂, WSe₂), and topological insulators (Bi₂Se₃, Bi₂Te₃) using the CVD over-growth or mechanical transfer method. We will explore the new physical properties and functionalities of these unconventional hybrid structures.
- 3. For all fabricated hybrid structures we will investigate the influence of interface and defect. We will find ways to improve the controllability of these hybrid structures. We aim to explore potential new device applications of these multifunctional hybrid structures.
- 5.2 Revised Objectives

1. 2. 3.

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

We have studied a flexible microwave magnetic $CuFe_2O_4$ (CuFO) epitaxial thin film with tunable ferromagnetic resonance spectra using purely mechanical strains, including tensile and compressive strains, on flexible fluorophlogopite (Mica) substrates. It can be used for flexible tunable resonators and filters and has great potential for flexible mechanics-magnetic deformation sensors. Furthermore, we observe a superior microwave magnetic stability and mechanical antifatigue character in the CuFO/Mica thin films. These flexible epitaxial CuFO thin films with tunable microwave magnetism and excellent mechanical durability are promising for the applications in flexible spintronics, microwave detectors, and oscillators. The results have been published in *Adv. Funct. Mater*.

We have prepared solid-solutions $(1-y)(Mg_{0.95}Zn_{0.05})_2TiO_4-yMg_{0.95}Zn_{0.05}Fe_2O_4$ (y = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) by traditional solid-state reaction and systematically study their phases, morphologies, and magnetodielectric properties. The giant dielectric constants are observed at low frequency in the ceramics, with y>0.5 when the sintering temperature exceeds 1200 °C. All the results indicate that our

solid-solutions with y>0.5 can considerably improve the dielectric and magnetic properties, providing more advantages than the simple bi-phasic compounds in the applications for novel electronic devices. The results have been published in *Journal of the European Ceramic Society*.

We have realized quasi-zero-dimensional (0D) photon emission of WS_2 in a coupled hybrid structure of monolayer WS_2 and InGaN quantum dots (QDs). An interfacial bound exciton, i.e., the coupling between the excitons in WS_2 and the electrons in QDs has been identified. The emission of this interfacial bound exciton inherits the 0-D confinement of QDs as well as the spin-valley physics of excitons in monolayer WS_2 . The results have been published in *Nano Letter*. We have observed the enhancement of the PL intensity of ML-WS₂ in a van der Waals heterostructure of ML-WS₂/InGaN-QDs. The mechanism of this PL enhancement is due to the aggregation of excitons in WS₂ ML toward the QD sites to form an interfacial bound state, which effectively mitigates the influence of defects. The results have been published in *Applied Physics Letters*.

We have obtained the laminated $Co_{1.1}Fe_{1.9}O_4$ (CFO) spinel ferrites with different thicknesses by tape-casting method. All these samples have high relative density larger than 95%. Besides, comparing with the CFO sample sintered via traditional solid-state reaction method, the samples fabricated with tape-casting method own more uniform grain distribution and stronger magnetic anisotropies, and their magnetic anisotropies can be considerably enhanced by reducing the thickness, which may be caused by the gradually changed grain orientation, smaller grain sizes and uniform grain distribution. This valuable method provides a new approach to improve magnetic anisotropy of not only CFO but probably also other ferrites. The results have been published in *Ceramics International*.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The successful collaborations between the two teams will continue in the direction of studying functional and quantum materials, and their hybrid structures. Future development will focus on design and demonstration of various devices. We are co-supervising two PhD students currently working in these directions.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Functional materials, layered 2D materials, and their hybrid structures have potential applications in flexible spintronics, microwave detectors and oscillators, electronics, and optoelectronics. In this research project, we have explored functional materials and obtained their improved properties by using new fabrication methods. We have fabricated 2D-0D hybrid structures and observed enhanced light emission. These results are valuable for further development of designing new devices.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Lat	est Status	of Publi	cations	Author(s)	Title and	Submitted	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(bold the authors	Journal/ Book	to RGC	to this	the support of	
publication	Acceptan	Review	Preparation	belonging to the	(with the	(indicate	report (Yes		institutiona
	ce (For			project teams and	volume, pages	the year	/	Research	1 repository
	paper .		(optional)	denote the	and other	ending of		Scheme	(Yes or No)
	accepted			corresponding	necessary	the relevant		(Yes or No)	
	but not			author with an	publishing details	progress report)			
	yet publishe			asterisk*)	specified)	report)			
	d)				specifica)				
2018	uj			Wenlong Liu,	"Mechanical	2019	No	Yes	Yes
				Ming Liu, Rong	Strain-Tunabl				
				Ma, Ruyi Zhang,	e Microwave				
				Wenqing Zhang,	Magnetism in				
				Dapeng Yu,	Flexible				
				Qing Wang,	$CuFe_2O_4$				
				Jiannong Wang,	Epitaxial				
				and Hong	Thin Film for				
				Wang*	Wearable				
				vv ang	Sensors" Adv.				
					Funct. Mater.				
2010				D M	28 , 1705928	2010	Ъ.т.		X 7
2018				Rong. Ma,	"Enhanced	2019	No	Yes	Yes
				Yatong. Cheng,	permittivity				
				W.enlong Liu,	and				
				Liangliang Wu,	permeability				
				Qibin Yuan,	of (1-y)				
				Huachen Zhang,	$(Mg_{0.95})$				
				Huajing Fang,	$Zn_{0.05})_2 TiO_4$				
				Jiannong	$Mg_{0.95}Zn_{0.05}$				
				Wang*, and	Fe_2O_4				
				Hong Wang*	ceramics"				
				nong wang	Journal of				
					the European				
					Ceramic				
					Society, 38 ,				
					5367-5374				
2018			1	Guanghui	"Interfacially	2019	No	Yes	Yes
				Cheng, Baikui	Bound				
				Li*, Chunyu	Exciton State				
				Zhao, Xin Yan,	in a Hybrid				
				Hong Wang,	Structure of				
				Kei May Lau,	Monolayer				
				and Jiannong	WS_2 and UC_2N				
				Wang*	InGaN				
					Quantum				
					Dots" Nano				
					Lett. 18 ,				
					5640-5645				

2019	Guanghui	"Exciton	2021	Yes	Yes	Yes
	Cheng, Baikui	aggregation				
	Li, Chunyu	induced				
	Zhao, Zijing Jin,	photolumines				
	Hui Li, Kei May	cence				
	Lau and	enhancement				
	Jiannong	of monolayer				
	Wang*	WS_2 " Appl.				
	,, ang	Phys. Lett.				
		114, 232101				
2019	Rong Ma,	"Thickness -	2021	Yes	Yes	Yes
	Wenlong Liu,	dependent				
		magnetic				
	Huajing Fang,	anisotropy in				
	Jiannong	laminated				
	Wang,* and	Co _{1.1} Fe _{1.9} O ₄				
	Hong Wang*	ceramics"				
	inong wang	Ceramics				
		International				
		45				
		23734–23739				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
July 29 to August 3 2018, Monpellier, France	Interfacial	the 34th International Conference on the Physics of Semiconductors	2019	No	Yes	Yes
July 14 - 19, 2019 Nara, Japan	Aggregation Induced Photoluminescenc	Optoelectronics and	2021	Yes	Yes	No
Dec 12-15, 2019 Shenzhen, China	excitonic states in monolayer WS ₂	the 2 nd International Symposium on Low Dimensional Materials for Optoelectronics	2021	Yes	Yes	No

Name	Degree registered for		Date of thesis submission/ graduation
Rong Ma	PhD	August 2016	June 2019
Rui Gong	PhD	August 2018	August 2022 (Expected)

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N.A.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	5	3	0	0	0
arising directly					
from this research					
project [or					
conference]					