

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Nur77: new insights in signaling and mechanism of activation of epithelial-mesenchymal transition and tumor metastasis

Nur77誘導上皮間質轉化和腫瘤轉移的新機制

	Hong Kong Team	Mainland Team		
Name of Principal Investigator (<i>with title</i>)	Dr. Wong Alice Sze-Tsai 黃思齊博士	Dr. Zeng Jin-Zhang 曾錦章博士		
Post	Professor 教授	Deputy Dean & Professor 教授兼副院長		
Unit / Department /	School of Biological	School of Pharmaceutical		
Institution	Sciences, University of Hong	Sciences, Xiamen University		
	Kong	厦門大學药學院		
	香港大學生物科學學院			
Contact Information				
Co-investigator(s)				
(with title and				
institution)				

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

Original	Revised	Date of RGC/	
		Institution Approval	

NSFC/RGC 8 (Revised 01/18)

		(must be quoted)
Project Start date	1/1/2015	
Project Completion date	31/12/2018	
Duration (in month)	48	
Deadline for Submission of Completion Report	31/12/2019	

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- 1. To investigate Nur77, FKBP38, Rheb, and mTORC1 interactions in the postulated crosstalk events, and the subsequent activation and signaling mechanisms;
- 2. To determine the cellular effects mediated by the Nur77-mTORC1 signaling axis on EMT and tumor metastasis; and

- *3.* To elucidate the role of honokiol and its derivatives in the regulation of the Nur77-FKBP38/Rheb-mTORC1 axis, and with the use of animal models to explore potential clinical effects.
- 5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

1. 2. 3. NSFC/RGC 8 (Revised 01/18)

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

Metastasis is the major cause of cancer deaths. Epithelial-mesenchymal transformation (EMT) is the initiating and key rate-limiting step of cancer progression and metastasis. The core of this project is to study the pro-survival role of Nur77 in tumor, especially on how Nur77 activates and regulates mTORC1 under hypoxia and TNF α stimulation. In this project, emphases have been made on the following research work: role of Nur77-dependent mTORC1 activity in EMT and metastasis of cancer; the molecular mechanism of Nur77 activating mTORC1 (FKBP38 and Rheb); and the identification of compounds targeting Nur77-mTORC1 and their anticancer mechanisms. Through these studies, we identified the potential targeting value of Nur77-mTORC1 signaling pathway.

The main achievements include: 1) Nur77 is the key regulator of TNF α activation and the maintenance of mTORC1. The pro-survival function of Nur77 depends on the stimulation of TNF α , and Nur77-dependent mTORC1 activity has important role in the TNF α -promoted EMT and migration and metastasis of cancer cells. 2) Mechanistically, Nur77 activation of mTORC1 was due to its up-regulation Rheb, which could be modulated by direct interaction with FKBP38. 3) We identified several compounds including NAM446-1 that could directly bind Nur77 and reverse the pro-EMT and proliferative effect of TNFa on colon and breast cancer by targeting Nur77-mTORC1 pathway. 4) Interestingly, another compound N446-7S that induces and binds Nur77 could strongly induce the degradation of FKBP38 and Bcl-2, leading to inhibition of EMT and metastasis of colon cancer. In contrast, the derivative N446-7W that could only marginally induce Nur77 expression and had weak affinity on Nur77 could not inhibit mTORC1 activity. Both XMU and HKU contribute to generating above data (see the Chinese version contained original data which have been submitted to NSFC, which are under preparation for publication). 5) We also disclose a new role of Nur77 that regulates mTORC1 activity through modulating let-7i-5p biogenesis that directly targets the 3'UTR of p110a mRNA, which action mediates the cell survival under hypoxia (Part C Ref. #7). 6) Based on this new role of Nur77, we found another compound ginsenoside derivative compound K that directly targets Nur77 could release its inhibitory effect on microRNA Let7i-5p and thus downregulating PI3K/AKT/mTORC1, which led to the inhibition on EMT of colon cancer (Part C Ref. #6, 7). 7) Finally, we found that honokiol derivative HK could target Nur77 and mediate the interaction between Nur77-dependent AMPK and mTORC1 and then inhibited EMT in colon cancer.

Therefore, this project has systematically elucidated the role of Nur77 in promoting EMT of cancer and revealed the potential of Nur77-mTORC1 as a therapeutic target. Importantly, we have successfully identified several lead compounds including NAM446-1, N446-7s, Honokiol and compound K that could target Nur77 and modulate Nur77-dependent mTORC1 activity. Some of them are under modification and optimization for further application. Under the support of this project, 6 academic papers have been published and 3 patents were applied and authorized. We attended 3 international meetings, and trained 2 postdoctoral fellows, 2 PhD students and 2 MPhil students. One of postdoctoral fellows was hired as an assistant professor by Xiamen University. The principle investigators of this project were awarded the leading scientific and technology innovative talents of Fujian "Shuangbai Project", and Fellow of Royal Society of Biology.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

This project is basic exploratory research work, and the transformation of the results has not been carried out yet. However, some compounds which target Nur77 identified in this project, such as NAM446-1, N446-7s, honokiol and compound K, have the potential of further optimization and modification.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Malignant tumors pose a serious threat to human health. Metastasis is the main characteristic of malignant tumors and the main cause of cancer death. Up to 90% of cancer patients eventually die of cancer metastasis. The initial step of metastasis is EMT. Interestingly, EMT is reversible, which provides an excellent direction for the development of anti- metastasis cancer therapies. Many growths signaling pathways are involved in the regulation of EMT. mTORC1 is a growth factor and energy metabolism sensing pathway. It is often found overactivated in many tumors and plays an important role in EMT. Nur77 is an orphan nuclear receptor, which is an early gene with dual functions of survival and death. The abnormal expression and function of Nur77 is related to tumorigenesis and development. This project revealed that Nur77 was a key regulatory protein in hypoxia and inflammatory microenvironment of tumor. Nur77 could indirectly or directly regulate mTORC1 activity and inhibit EMT and metastasis of cancer cells. Based on these novel regulatory mechanisms, the compounds identified in this project which target Nur77, such as NAM446-1, N446-7s, honokiol and compound K, are worth further optimization and modification.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Latest S	tatus of Public	ations		Author(s)	Title	and	Submitted	to Attach	ed	Acknowle	edge	Accessibl	le
Year of	Year of	Under	Under	(bold	the	Journal/		RGC	to	this	d the sup	port	from	the
publication	Acceptance	Review	Preparation	authors		Book		(indicate the	he report	(Yes	of this J	oint	institution	nal
_	(For paper		_	belongi	ng to	(with	the	year endir	ig or No)		Research		repository	у
	accepted but		(optional)	the	project	volume,		of ti	he		Scheme		(Yes or No	<i>o</i>)
	not yet			teams	and	pages	and	relevant			(Yes or N	<i>o</i>)		
	published)			denote	the	other		progress						
				corresp	onding	necessar	у	report)						
				author	with an	publishir	ıg							
				asterisk	*)	details								
						specified	!)							

2017		Wang PY	, TRC4, an	31/12/201	Yes	Yes	Yes
		Zeng W.	, improved	6			
		Liu J, W	u triptolide				
		YL, Ma Y	, derivative,				
		Zeng Z	, specificall				
		Pang JY	, y targets				
		Zhang XK	, to				
		Yan X	, truncated				
		Wong AS*	, form of				
		Zeng JZ*	retinoid X				
			receptor-al				
			pha in	L			
			cancer				
			cells.				
			Biochemic				
			al				
			Pharmaco				
			<i>logy</i> 124,	,			
			19-28				

2017		Zeng W,	Targeting	21/12/201	Yes	Yes	Yes
		Zhang C, Cheng H, Wu YL, Liu J, Chen Z, Huang JG, Ericksen RE, Chen L, Zhang H, Wong AS* , Zhang XK, Han W and Zeng JZ*	to the non-geno mic activity of retinoic acid receptor-g amma by acacetin in	6			
2017			synergy of helicobact er pylori and lipid metabolic		Yes	Yes	Yes
2017		Fang M, Zeng JZ*, Wu Zhen	biological evaluation		Yes	Yes 9	Yes

2020	2019		Zhang S,	The roles	No	Yes	Yes	Yes
	(in press)		Gao W, Tang J, Zhang H, Zhou Y, Liu J, Chen K, Liu F, Li W, To SK, Wong AS* ,	of GSK-3β in regulation of retinoid signaling and sorafenib treatment response				
2019				Chemical structures and pharmacol ogical profiles of ginseng saponins. <i>Molecules</i> 24, E2443	No	Yes	Yes	Yes
		2019	Tang J, Zeng JZ*,	Hypoxia-i nduced Nur77 activates PI3K/Akt signaling via suppressio n of Dicer/Let- 7i-5p to induce epithelial-t o-mesench ymal transition. <i>Science</i> <i>Signaling</i> (in revision)		Yes	Yes	Yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible	
Place			to RGC (indicate the year ending of the relevant progress report)	report (Yes or No)		from t institutional repository (Yes or No)	he
Dec 2016/Londo n, UK	Nur77 regulates hypoxia-induce d epithelial-to-me senchymal transition in colon cancer cells	British Pharmacological	31/12/2016	Yes	Yes	Yes	
Nov 2017/Xiame n, China		Asian Federation of Pharmaceutic Sciences Conference	No	Yes	Yes	Yes	
Mar-Apr 2019/Atlant a, GA, USA	Hypoxia-induced Nur77 activates PI3K-p110 〈/Akt/mTOR via suppression of Dicer/Let-7i-5p to induce epithelial-to-mese nchymal transition in colon cancer cells		No	Yes	Yes	Yes	

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation
Deng Shan	PhD	2014	July 2018

11.Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

The PIs would like to thank NSFC/RGC for its support. In addition to publication in top-tier journals, other impact includes:

Patents:

- (1) US Provisional Application No. 62/426,937 (by Deng Shan and Alice S. T. Wong on treating cancer by ginsenoside and its analogs).
- (2) 中国专利, 吴云龙; 陈晓东; **曾锦章**; 张晓坤, 细胞牵引力显微镜及其在抗癌药物药效 及药理检测中的方法, 授权, 2018.7.10-2035.2.17, 201410538575.9
- (3) 中国专利, 吴振; 方美娟; 曾锦章; 胡鸿雨; 林春蓉; 敖名涛; 钱宇卿,
 1-(2-(金刚烷-1-基)-1H-吲哚-5-基)-3-取代脲衍生物及制备和用途, 授权,
 2018.4.10-2036.2, 201510749625.2

Awards:

Alice S. T. Wong: Fellow, Royal Society of Biology, UK (2019).

Jin-Zhang Zeng: leading scientific and technology innovative talents of Fujian "Shuangbai Project"