RGC Ref.: N_HKU735/14

NSFC Ref. : 31461163001

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Orexin-induced modulation of activity-dependent synaptic plasticity is critical for the maturation of vestibular circuitry and functions

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	CHAN Ying-Shing	WANG Jian-Jun
Investigator (with title)	(Professor)	(Professor)
Post	Professor	Professor
Unit / Department /	School of Biomedical	Department of Biological
Institution	Sciences, Li Ka Shing	Science and Technology &
	Faculty of Medicine, The	State Laboratory of
	University of Hong Kong,	Pharmaceutical
	Hong Kong	Biotechnology, School of Life
		Science, Nanjing
Contact Information	yschan@hku.hk	jjwang@nju.edu.cn
Co-investigator(s)	SHUM Kwok-Yan Daisy	ZHUANG Qian-Xing
(with title and	(Professor)	(Lecturer)
institution)	YUNG Wing-Ho	LI Bin
	(Professor)	(Lecturer)
	LAI Chun-Hong	
	(Lecturer)	

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	2015-01-01		
Project Completion date	2018-12-31		
Duration (in month)	48 months		
Deadline for Submission of Completion Report	2019-12-31		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To determine the regulatory role of orexin on long-term synaptic plasticity in the VN and cerebellum.
 - To investigate if neonatal perturbation of orexin neurons in the hypothalamus or orexin synapses in the VN has any effect on (a) the tuning of synaptic efficacy in the VN and cerebellum, (b) developmental formation of spatial map, and (c) maturation of vestibular-related behaviors.
 - 3. To examine if perturbation of orexin neurons in the hypothalamus or orexin synapses in the VN applied towards the end of the postnatal period has any effect on the mature animal.
- 5.2 Revised Objectives

Date of approval from the RGC:	

Reasons for the change:

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

Objective 1 – Regulatory role of neuromodulator

Hypothalamic orexinergic and histaminergic systems innerve the VN and cerebellum which is also known to send projection to the VN. But how these neuromodulatory systems affect VN neurons and subsequently participate in motor control are not well understood.

We found that histamine increased excitability and sensitivity of VN neurons through activation of histamine H2 receptors and their coupled HCN channels, contributing to histaminergic improvement of the vestibular-related motor behaviors. H1 receptors also promoted vestibular compensation following unilateral vestibular lesion. [*Frontiers in Cellular Neuroscience* 2017]

Progressive increase in postnatal expression of OX1R and OX2R was observed in the rat VN. Activation of these receptors by orexin or OX1/2R agonists suppressed the frequency of glutamate receptor-mediated miniature excitatory postsynaptic current (mEPSP) and GABA_A receptor-mediated miniature inhibitory postsynaptic current (mIPSC). This shows the increasing potency of orexin in suppressing synaptic transmission in the maturing VN. [To be submitted to *J Neuroscience* in Jan 2020]

Objective 2 – Neonatal perturbation of orexinergic input to VN

(a) Effect on synaptic efficacy [To be submitted to *J Neuroscience* in Jan 2020]

Given the tight correlation between synaptic plasticity and structural modification of dendritic spines, we examined the maturation state of such spines in the VN. Orexin treatment at P1 significantly reduced the number of spines and the percentage of mature mushrooms but increased the proportion of immature filopodia. This suggests a delay in maturation of VN neurons. Since glutamergic synapses are found at head of spine, we also documented the expression of AMPA receptor subunits (GluA1 and GluA2) in the VN. Orexin or OX2R agonist treatment at P1 decreased these subunits while pre-treatment with OX1R antagonist had no effect. These suggest that activation of orexin receptors reduced excitability of VN neurons through attenuation of excitatory input by postsynaptic mechanism.

(b) Effect on formation of spatial map [To be submitted to *J Neuroscience* in Jan 2020]

To reveal the effect of suppressed vestibular development on ascending vestibular pathways for higher functions, the proportion of vestibular-related neurons in the anterodorsal nucleus (ADN) of the thalamus was examined. After robust vestibular stimulation by wobble rotation, the number of functionally activated ADN neurons was significantly attenuated in rats pre-treated at P1 with orexin or OX2R agonist. This deranged spatial map in the ADN indicated that the ascending vestibulo-thalamic pathway was not well formed with early over-activation of orexin receptors in the VN. On the other hand, OX1R antagonist treatment at P1 increased the number of vestibular-related neurons in the ADN.

(c) <u>Effect on maturation of vestibular behaviours</u>. [*Brain Structure Function; 2019;* To be submitted to *J Neuroscience* in Jan 2020]

Specific behavioral tests were conducted at different postnatal stages until adulthood. Neonatal treatment with OX2R agonist (1) postponed the emergence of innate reflexes (such as negative geotaxis, surface righting and air righting) during postnatal development; (2) impaired the performance of rota-rod test, balanced beam test, and spatial navigation at the adult stage. Similar postponement was observed following inhibition of GABAergic or glutamatergic transmission in the VN with bicuculline or MK801 respectively. On the other hand, neonatal treatment with OX1R antagonist accelerated postnatal emergence of innate reflexes and improved the learned motor coordination in the adult.

To investigate whether neonatal perturbation of orexin neurons in the lateral hypothalamus (sole source of orexin input to VN) has any effect on the maturation of vestibular-related behaviors, we stereotaxically injected an AAV-carrying shRNA construct against orexin into the lateral hypothalamus of P4 rats with an aim to inactivate the orexin neurons. At P13–21, these rats showed an accelerated acquisition of air-righting reflex when compared with the age-matched controls. At the adult stage, these rats also showed better spatial navigational performance than control animals. Taken together, we demonstrated that orexinergic modulation in the VN impacts developmental refinement of neural circuits that support vestibular-related behaviors.

Objective 3 – Postnatal time window of orexin action

To address whether orexinergic perturbation applied at late postnatal stage would also have long-lasting consequence, rats were exposed to orexin, OX2R agonist or OX1R antagonist at P14. It was found that P14 treatment did not result in any observable change in the battery of vestibular-related behavioral tests used. We therefore concluded that the critical period during which orexin can affect maturation of vestibular circuits ends before P14. [*To be submitted to J Neuroscience* in Jan 2020]

Potential for further development of the research and the proposed course of action *(maximum half a page)*

This project revealed that orexin modulates neonatal development of vestibular circuits. Activation of orexin receptors in VN suppressed both excitatory and inhibitory neurotransmission in VN. This delayed/ suppressed maturation of excitatory synapses in the VN, and deranged the pathways for dissemination of vestibular information to higher brain centers. We reason that such derangement caused the observed deficits in vestibular-related behavior. Real-time assessment of behaviour-correlated neuronal activity in higher brain centers by calcium imaging or multichannel recording will provide proof of circuit derangement and shed light on how vestibular input from the VN shapes behaviour.

Pilot experiments found bidirectional afferent innervation between the hypothalamus and cerebellum. To pinpoint the effect of orexin in cerebellar circuits, the drug delivery mode has to be modified to limit drug exposure to the cerebellum but not the VN. Our pilot results also indicated that blockade of orexin receptors affected the rewiring of adult vestibular circuits in response to lesion-induced loss of sensory input. These suggest that circuit plasticity in adults remains tunable beyond the developmental critical period, and opens new avenues for research into how such plasticity may be harnessed for rehabilitation after neurotrauma or curing of neurodevelopmental disorders.

Given the potent suppressive effect of orexin on both excitatory and inhibitory neurotransmission, experiments should be designed to investigate whether activation of orexin neurons is behavioral state specific. This would open new vistas in understanding the functional significance of neuromodulators.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

This project reveals a novel neuromodulatory role of neuropeptide orexin in the development of circuits for processing spatial information. Activation of orexin receptors in brainstem neurons suppresses neural activity. This low activity state delays maturation of neurons within a critical period (two weeks after birth) in the neonatal rat. The altered maturation profile hindered consolidation of brain-wide pathways that support spatial cognition and caused deficits in spatial learning behaviour that persisted into adulthood.

We also offer a platform for therapeutic strategies that could rescue synaptic disorders in development and promote neurorehabilitation in adults.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicati	ons	Author(s)	Title and Journal/	Submitted to	Attached	Acknowl	Accessib
Year of	Year of	Under	Under	(bold the authors	Book	RGC	to this	edged the	le from
publication	Acceptance	Review	Preparatio	belonging to the	(with the volume,	(indicate the	report	support	the
	(For paper		n	project teams	pages and other	year ending of	(Yes or	of this	institutio
	accepted		(antional)	and denote the	necessary	the relevant	NO)	Joint Doscorch	nal
	published)		(optional)	author with an	specified)	report)		Scheme	v
	publishea)			asterisk*)	specifica)	(0)		(Yes or	y Yes or
				,				No)	No)
2017				Li B, Zhang	Histamine	December	No	Yes	Yes
				XY, Yang	increases	31, 2016			
				AH, Peng	neuronal				
				XC, Chen ZP,	excitability and				
				Zhou JY,	sensitivity of the				
				Chan YS.	lateral vestibular				
				Wang JJ.	nucleus and				
				Zhu JN	promotes motor				
					behaviors via				
					HCN channel				
					coupled to H2				
					receptor				
					Frontiers in				
					Collular				
					Neuroscience				
					(2017) 10.200 dei				
					(2017) 10:500.001.				
					00300.				
2019				Ma CW.	Regulatory roles		Yes	Yes	Yes
				Kwan PY.	of perineuronal				
				Wu KL	nets and				
				Shum DK*.	semaphorin 3A				
				Chan YS*	in the postnatal				
					maturation of				
					the central				
					vestibular				
					circuitry for				
					gravicentive				
					roflox Brain				
					Structure and				
					Structure and				
					F UNCLION				
					(2019)224:013-02				
					10.1007/s00429-018-				
					1795-x				
			2019	Lam UT,	Orexin regulates		Yes	Yes	No
				Jiang Y,	developing rat				
				Kwan PY,	vestibular				
				Wu KL, Han	circuitry for				
				L, Chua OW.	behaviours				
				Shum DK.	[To be submitted				
				Wang JJ.	to Journal of				
				Chan YS*	Neuroscience				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted to	Attached to	Acknowle	Accessible
Place			RGC (indicate	this report	dged the	from the
			the year ending of	(Yes or No)	support of	institution
			the relevant		this Joint	al
			progress report)		Research	repository
					Scheme	(Yes or No)
					(Yes or No)	
March 2016/	Developmental	11 th International	December 31,	No	Yes	Yes
Hong Kong	roles of orexin	Symposium on	2016			
0 0	in the central	Healthy Aging:				
	vestibular	Science and Aging –				
	system on	An Era of Discovery:				
	acquisition of	60.				
	motor					
	coordination					
	and spatial					
	recognition					
May 2016/	Orevin	Neuroscience	December 31	No	Ves	Ves
Hong Kong	modulates	Symposium 2016 &	2016	110	105	105
Hong Rong	inhibitory	Scientific Conference of				
	synantic	The Hong Kong Society				
	transmission of	of Neurosciences: 37.				
	vestibular					
	vestibulai					
	in rote					
NT 1	III Tais.	Acth Anne 1 Martin	December 21	NT -	V	V
November	Modulatory role	46 th Annual Meeting	2016	NO	res	res
2010/	of orexin on	of the Society for	2010			
San Diego	synaptic	Neuroscience (USA):				
	transmission in	803.04				
	the central					
	vestibular					
	system	4 cth 4 1 1 K	D 1 01		* 7	X 7
November	Behavioral	46 th Annual Meeting	December 31, 2016	No	Yes	Yes
2016/	expression of	of the Society for	2016			
San Diego	orexin-modulate	Neuroscience (USA):				
	d transmission	803.09				
	in the vestibular					
	nucleus of					
	postnatal rats					
March 2017/	Modulatory role	12th International		Yes	Yes	Yes
Hong Kong	of orexin on	Symposium on				
	synaptic	Healthy Aging:				
	transmission in	Science and Aging: 64				
	the central					
	vestibular					
	system					

June 2017/	Orexin	International	Yes	Yes	Yes
Hiroshima	modulates	Behavorial			
	synaptic	Neuroscience Society			
	transmission in				
	the central				
	vestibular				
	system				
July 2018/	Orexin delays	11th Federation of	Yes	Yes	Yes
Berlin	activity-depende	European			
	nt maturation of	Neuroscience			
	the vestibular	Societies (FENS)			
	system in rats	Forum of			
	-	Neuroscience			
March 2019/	Postnatal	9 th Congress of	Yes	Yes	Yes
Kobe	refinement of	Federation of			
	circuit plasticity	Asian-Oceanian			
	for spatial	Physiological			
	navigation	Sciences (FAOPS)			
	[Invited talk]				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/
			graduation
Ulysses Tsz-Fung LAM	MPhil	January 2015	May 2017
Ivy Yuan JIANG	MPhil	September 2015	January 2018

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N.A.