RGC Ref.:
 N-HKU 732/12

 NSFC Ref.:
 31261160493

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Novel Functions of Spexin as a Regulator for Reproduction and Feeding in Fish Model.

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team		
Name of Principal	Wong Anderson On-Lam	Lin Haoran		
Investigator (with title)				
Post	Professor	Professor		
Unit / Department /	School of Biological Sciences	School of Life Science		
Institution	The University of Hong Kong	Sun Yatsen University		
Contact Information	Email: <u>olwong@hku.hk</u>	Email: <u>Isslhr@mail.sysu.edu.cn</u>		
	Phone: 852-2299-0863	Phone: 8620-8411-0188		
Co-investigator(s)	NA	Zhang Yon (Asso. Prof., School		
(with title and		of Life Science, Sun Yatsen		
institution)		University)		

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01-Jan-2013	NA	NA
Project Completion date	31-Dec-2016	NA	NA
Duration (in month)	48 months	NA	NA
Deadline for Submission of Completion Report	30-Dec-2017	NA	NA

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

(1) Using goldfish as a model for modern-day bony fish to confirm the central expression of the newly identified neuropeptide SPX and establish its distribution profile in the hypothalamo- pituitary axis & related brain areas with possible association with neurons expressing GnRH & feeding regulators in the brain and gonadotrophs in the pituitary.

- (2) Using in vivo & in vitro approaches to study the functional role of SPX in LH regulation & reproductive performance in goldfish through direct actions in the pituitary and/or indirect actions through modulation of GnRH expression in the brain or functional interactions with sex steroids from the gonad.
- (3) To provide in vivo & in vitro evidence that SPX expression in goldfish can be induced by feeding, which in turn serves as a satiety signal to suppress feeding behavior & food intake by direct actions to inhibit basal feeding/block the orexigenic effects of feeding stimulators and/or indirect actions to modify gene expression of various feeding regulators in brain areas involved in feeding control.
 - 5.2 Revised Objectives

Date of approval from the RGC:	
Reasons for the change:	

Not applicable.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

- (I) <u>Structural characterization & tissue expression of SPX:</u> The full gene of goldfish SPX was cloned & confirmed to be composed of 4 introns and 5 exons. The 14 a.a. mature peptide encoded was found to be highly conserved from fish to mammals with only one a.a. substitution. As revealed by CD & NMR spectroscopies, the solution structure of SPX mature peptide was confirmed to be in the form of a C-terminal helical peptide with Lys¹¹ as the only charged residue on the molecular surface. Using RT-PCR & real-time PCR, different isoforms of SPX transcripts were detected and shown to be ubiquitously expressed at tissue level, including different brain areas & pituitary. Using LC/MS/MS, SPX mature peptide was identified in the brain-pituitary axis of goldfish & this finding was further substantiated by the detection of SPX immunoreactivity (IR) in neurons within brain areas with expression of GnRH & various feeding regulators, including the telencephalon, hypothalamus and optic tectum. In goldfish pituitary, SPX IR signals were also found in nerve fibres in close proximity to gonadotrophs located in the pars distalis. These findings have provided new information for SPX in terms of its genomic organization, molecular structure and tissue expression related to its potential functions in the brain & pituitary in fish model.
- (II) Functional role of SPX in reproduction: In goldfish, a gradual drop in SPX expression in the hypothalamus was noted when the fish became sexually mature during seasonal reproductive cycle and similar findings were also observed in zebrafish. In sexually mature goldfish, SPX treatment by IP injection or static incubation of pituitary cells was found to reduce LH release without altering LH β & GtH α gene expression at pituitary level. In female fish at the same stage, SPX expression in the hypothalamus could be elevated by castration and the effect was blocked by estrogen replacement. In similar studies with fish in sexual regression & recrudescence, interestingly, SPX was shown to induce LH release & the effect was mediated by pituitary GalR2b coupled to PLC/PKC, Ca²⁺/CaMK-II, MAPK and PI3K/Akt but not cAMP/PKA cascades. In these experiments, the LH-releasing effect of SPX was not additive to GnRH but could be inhibited by dopamine D2 activation at pituitary level or co-treatment with testeosterone/estrogen. Given that ICV injection of SPX was not effective in altering plasma LH level/affecting GnRH expression in the hypothalamus, LH regulation by SPX probably is mediated by direct action acting on the goldfish pituitary. Our findings, as a whole, provide evidence that SPX can play a role in goldfish reproduction by modulating LH secretion presumably via seasonal interactions with gonadal steroids & other LH regulators. Of note, in parallel studies with grouper & zebrafish, the reproductive function/ LH regulation by SPX was not apparent, suggesting that the functional role of SPX in reproductive control in fish models may be species-specific.
- (III) Functional role of SPX in feeding control: In goldfish, SPX expression in the telencephalon, hypothalamus & optic tectum could be up-regulated by feeding. Meanwhile, SPX treatment by IP & ICV injection were shown to inhibit feeding behaviour & food consumption with parallel rises in anorexigenic factors (including POMC, CART, CCK, MCH & CRH) & down-regulation of orexigenic signals (including NPY, AgRP, apelin & orexin) in the brain areas with SPX expression after feeding. In parallel studies, food intake induced by NPY & orexin was blocked by SPX co-treatment in vivo and the differential effects on gene expression of various or exigenic & anorexigenic factors after SPX treatment were also observed in goldfish brain cell culture prepared from the same brain areas. The postprandial rise in SPX expression at hypothalamic level & SPX modulation of feeding & central expression of feeding regulators had also been confirmed in grouper & zebrafish. Using both in vivo & in vitro studies, the insulin signal caused by glucose rise in circulation after food intake was confirmed to be the functional link between feeding & SPX expression. In goldfish, insulin by acting as an endocrine signal could induce SPX expression in telencephalon, hypothalamus & optic tectum & similar effects were mimicked by glucose treatment. Interestingly, insulin was also found to be expressed at high level in goldfish liver under the influence of blood glucose, which could act as an autocrine/paracrine signal to increase SPX expression & secretion at the hepatic level. The SPX responses in the brain & liver were mediated mainly by insulin receptor & to a lesser extent by IGF-I receptor functionally coupled to P_{38}^{MAPK} & PI3K/Akt pathways. The subsequent rise of SPX in circulation together with the central expression of SPX under insulin induction may act together to trigger the differential regulation of feeding signals (both orexigenic & anorexigenic) in brain areas involved in appetite control in goldfish. These findings, taken together, provide evidence that SPX can serve as a novel satiety factor in fish model by functional coupling with insulin & glucose signals triggered by food intake.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

- (I) <u>Further development of SPX study in zebrafish</u>: Since the use of mini-osmotic pump for long-term study of SPX treatment in goldfish was proven to be not appropriate (as the size of the osmotic pump is still too big), our research partners in China, Profs Hoaran Lin & Yong Zhang, have extended our SPX study to zebrafish. Recently, they have been successful in establishing the zebrafish mutant with SPX knockout. Based on their initial findings, SPX knockout did not affect puberty onset & gonadal functions in zebrafish. However, the mutant did exhibit increased appetite with parallel rise in AgRP expression in the hypothalamus but with no effect on body growth. Nevertheless, detectable rises in serum protein, triacylglycerol & cholesterol were noted, suggesting that the knockout model can be used for future study of SPX research in fish model.
- (II) Extension of SPX research to mouse model: Based on our studies in goldfish, the functional role of SPX in feeding control was also extended to the mouse model in our laboratory. With the support of a HMRF grant, studies have been initiated in the mouse model to (i) set up the NMR solution structure & its docking model with GalR2 & GalR3 receptors of mouse origin, and (ii) work out the mechanisms for SPX regulation of appetite control in mammalian model. Based on our initial studies, the solution structure of mouse SPX is pretty much identical to that of goldfish SPX and the helical peptide of SPX could insert in a "vertical manner" into the binding pocket formed by clustering of the 7 transmembrane domains of GalR2 & GalR3. Similar to goldfish, SPX expression & secretion could be induced by feeding in mouse entrained to a one-meal-per-day feeding schedule. However, the site of SPX was also effective in reducing food intake with parallel inhibition of NPY, AgRP & ghrelin receptor expression in the hypothalamus. We are still in the process of working out the receptor specificity (GalR2/3) for feeding control by SPX & functional role of insulin signal in SPX regulation in the mouse model.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Spexin (SPX), a peptide first identified by bioinformics, has emerged as a neuropeptide with pleiotropic functions but little/no information is available regarding its physiological role in lower vertebrates. Using goldfish as a model, the genomic organization, NMR solution structure and tissue expression of SPX have been characterized in fish species. Within the CNS, SPX expression could be detected in brain areas with expression of GnRH & feeding regulators as well as in nerve fibres in close proximity to gonadotrophs in the anterior pituitary. Consistent with these findings, our in vivo and in vitro studies have confirmed that SPX can play a functional role in reproduction and feeding control in goldfish. In this case, SPX produced in the hypothalamus probably could exert a direct effect at pituitary level to regulate LH release according to different stages of the reproductive cycle via seasonal interactions with gonadal steroids and other LH regulators expressed in the brain-pituitary axis. Meanwhile, SPX could also serve as a novel satiety factor in goldfish. Its expression in brain areas involved in appetite control could be induced by food intake to differentially modulate the central expression of orexigenic & anorexigenic signals to trigger subsequent inhibition on feeding behaviour.

(Word count: 199)

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

	e Latest Status			Author(s)	Title and	Submitted to		Acknowledge	
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	· ·		institutional
	(For paper			belonging to	(with the	- 0		Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding		report)			
				author with an					
				asterisk*)	details				
					specified)				
2013				M.K.H.	Goldfish	2015	Yes	Yes	Yes
				Wong, K.H.	Spexin:				
				Sze, T. Chen,					
				C.K. Cho,	structure				
				Henry C.H.	and novel				
				Law, I.K.	function as				
				Chu &					
					a satiety				
				A.O.L.	factor in				
				Wong *	feeding				
					control.				
					Am. J.				
					Physiol.				
					Endo &				
					Metab				
					305:E348 -				
					E366				
2013				Y. Liu, S. Li,	A novel	2015	Yes	Yes	Yes
2013				X. Qi, W.	neuropepti	2015	105	103	103
				Zhou, X. Liu,					
				H. Lin, Y.	suppressin				
				Zhang * &	g				
				C. H.K.	luteinizing				
				Cheng *	hormone				
				Ũ	release in				
					goldfish,				
					Carassius				
					auratus.				
					Mol Cell				
					Endocrinol				
					374: 65-72.				

2013	C. Sun, M.	Gene	2015	Yes	Yes	Yes
2013		expression	2015	105	1 55	1 05
	Ko, &	of				
	A.O.L. Wong					
	<u>م</u>	hormone				
		receptor in				
		carp				
		somatotrop				
		hs				
		differential				
		ly				
		regulated				
		by local				
		actions of				
		gonadotrop				
		in and				
		dopamine				
		D1				
		receptor				
		activation.				
		Mol Cell				
		Endocrinol				
		374:22-34.				
2013	Q. Jiang &	Signal	2015	Yes	Yes	Yes
	A. O.L.	transductio				
	Wong *	n				
	0	mechanism				
		s for				
		autocrine/p				
		aracrine				
		regulation				
		of				
		somatolacti				
		nα				
		In a numbi a m	1	1		
		secretion				
		and				
		and				
		and synthesis in carp				
		and synthesis in carp pituitary				
		and synthesis in carp pituitary cells by				
		and synthesis in carp pituitary cells by somatolacti				
		and synthesis in carp pituitary cells by somatolacti n α and β .				
		and synthesis in carp pituitary cells by somatolacti n α and β . Am. J.				
		and synthesis in carp pituitary cells by somatolacti n α and β . Am. J. Physiol.				
		and synthesis in carp pituitary cells by somatolacti n α and β . Am. J. Physiol. Endo &				
		and synthesis in carp pituitary cells by somatolacti n α and β. Am. J. Physiol. Endo & Metab				
		and synthesis in carp pituitary cells by somatolacti n α and β . Am. J. Physiol. Endo & Metab 304:E176 -				
		and synthesis in carp pituitary cells by somatolacti n α and β. Am. J. Physiol. Endo & Metab				

2014		Ko & A.O.L. Wong *	induction	2015	Yes	Yes	Yes
2014		Lin, M. He & A.O. L. Wong *	Neurokinin B and reproductiv e functions: - "KNDY neuron" model in mammals and the emerging story in fish. Gen Comp Endocrinol 208:94-108	2015	Yes	Yes	Yes

0.01	 	a a 37		a a 4 =	.	• •	
2014			Mechanis	2015	Yes	Yes	Yes
			ms for				
		Ko, &	luteinizing				
		A.O.L. Wong	hormone				
		*	induction				
			of growth				
			hormone				
			gene				
			gene				
			transcriptio				
			n in fish				
			model:				
			Crosstalk				
			of the				
			cAMP/PK				
			A pathway				
			with				
			MAPK-				
			and				
			PI3K-depe				
			ndent				
			cascades.				
			Mol. Cell				
			Endocrinol				
			382:835-85				
			0.				
2014		 G. Hu, M.	Novel	2015	Yes	Yes	Yes
2014			pituitary	2013	100	100	100
			Prunary				
		Vo C Lin	actions of				
			actions of				
		& A.O. L.	TAC3 gene				
		& A.O. L. Wong *	TAC3 gene products in				
		& A.O. L. Wong *	TAC3 gene				
		& A.O. L. Wong *	TAC3 gene products in				
		& A.O. L. Wong *	TAC3 gene products in fish model: -				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB)				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB-				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary cells.				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary cells. Endocrinol				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary cells. Endocrinol ogy				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary cells. Endocrinol ogy 155:3582-3				
		& A.O. L. Wong *	TAC3 gene products in fish model: - Receptor specificity and signal transductio n for prolactin and somatolacti n α regulation by neurokinin B (NKB) and NKB- related peptide in carp pituitary cells. Endocrinol ogy				

2015		C Lin V	Groce com	NTA	Vac	Vac	Vac
2015		C. Lin, X. Jiang, G. Fu, W.K.W. Ko, & A.O.L. Wong *	prolactin: Molecular cloning, tissue expression, intrapituita ry autoregulat ion by prolactin and paracrine regulation by growth hormone and luteinizing hormone. Mol Cell Endocrinol 399:367-28	NA	Yes	Yes	Yes
2016	 	V I' I	3 T		X 7	X 7	N/
2016		X. Jiang, J. Xiao, M. He, A. Ma, & A.O.L. Wong *	feedback repressor for GH-induce d IGF1 expression in carp hepatocyte s. J Endocrinol 229:171-18 6		Yes		Yes
2016		G. Hu, M. He & A.O.L. Wong *	Novel		Yes	Yes	Yes

2016		S. Li, Q. Liu, L. Xiao, H. Chen, G. Li, Y. Zhang, & H. Lin *	Molecular cloning and functional characteriz ation of spexin in orange-spo tted grouper (Epinephel us coioides). Comp Biochem Physiol B 196-197:85 -91	NA	Yes	Yes	Yes
2017		A. Ma, M. He, J. Bai, M.K.H. Wong, W.K.W. Ko, & A.O.L. Wong *	Dual role of insulin in spexin regulation : Functional link betweet food intake and spexin expression i fish model. Endocrinolo gy 158:560-57'	NA	Yes	Yes	Yes
2017		G. Hu, M. He, W.K.W. Ko, & A.O.L. Wong *	TAC1 gene products regulate pituitary hormone secretion and gene expression in prepuberta l grass carp pituitary cells. Endocrinol ogy 158:1-22.	NA	Yes	Yes	Yes

2017		Liu, H. Lin, Y. Zhang, & C. H. K. Cheng *	suppress food intake in zebrafish:	NA	Yes	Yes	No
	Under review	A. Ma, J. Bai, M. He, & A. O. L. Wong *) Spexin as a neuroendo crine signal with emerging functions in mammals and fish models. Gen Comp Endocrinol (submitted & currently under review).	NA	Yes	Yes	No

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place			(indicate the	to this	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
Kauala Lumpur, Malaysia	satiety factor in	The 7 th Congress of Asian & Oceania Society of Comparative Endocrinology	2015	Yes	Yes	No
Buenos Aires, Argentina	1	International Symposium on Fish Endocrinology	2015	Yes	Yes	No

July/2013/	Novel	The 17 th International	2015	Yes	Yes	No
Barcelona,	mechanisms for	Congress of	2010	105	100	110
spain	signal termination					
	of growth	Endocrinology				
	hormone (GH)					
	receptor: - PIAS1					
	as a feedback					
	repressor for					
	GH-induced					
	IGF-I gene					
	transcription via JAK2/STAT5					
	signaling.					
	(State-of-the-Art					
	Lecture)					
Mar/2014/	Novel pituitary	The 7 th Intercongress	2015	Yes	Yes	No
Keelung,	actions of TAC3	Symposium of Asian &				
Taiwan	gene products in	Oceania Society of				
	fish model.	Comparative				
		Endocrinology				
April/2016/	Insulin as a	The 98 th Annual	NA	Yes	Yes	No
Boston,	postprandial	Meeting of the	INA	168	168	INO
MA, USA	signal for spexin	Endocrine Society				
MA, USA	induction in fish					
	model: - Signal					
	transduction and					
	evidence of a					
	peripheral spexin					
	component.	and oth or and				
June/2016/		The 8 th Congress of the	NA	Yes	Yes	No
Seoul,	and TAC3 gene products in	Asian & Oceania				
Korea	somatolactin α	Society for Comparative Endocrinology				
	regulation:	Lindoermology				
	Pituitary type III					
	neurokinin					
	receptor					
	expression and					
	intrapituitary					
	feedback by					
	somatolactin α.					
	(State-of-the-art					
April/2017/	lecture) Evidence for	The 99 th Annual	NA	Yes	Yes	No
April/2017/	spexin as a novel	Meeting of the	INA	res	1 85	UND OVE
Orlando,	luteinizing	Endocrine Society				
Florida,	hormone	Endoernie Society				
USA	(LH)-releasing					
	factor in goldfish					
	via direct action					
	at pituitary level:					
	- Receptor					
	specificity, signal					
	transduction and					
	interactions with					
	LH regulators in					
	fish model.					

June/2017/	Insulin as a	The 18 th International	NA	Yes	Yes	No
Alberta,	functional link	Congress of				
Canada	between food	Comparative				
	intake and spexin	Endocrinology				
	expression:					
	Recent progress					
	on spexin as a					
	satety factor in					
	fish model.					
	[Invited					
	symposium					
	presentation]					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Jiang Xue	PhD	Sept 2009	Sept 2013
Wong Wei, Wade	M.Phil	Sept 2011	Aug 2013
Wong Ka Hei, Matthew	M.Phil	Sept 2011	Aug 2013
Hu Guangfu	PhD	Sept 2010	Nov 2014
Chen Shuang	PhD	Sept 2010	Feb 2015
Ma Ani	PhD	Sept 2013	Nov 2017

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Not Applicable.