

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Key technology in time-reversal based optical scanning holography and its application on fluorescent biological specimens

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Edmund Lam	Prof. Bingzhong Wang
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of Electrical	School of Physical Electronics
Institution	and Electronic Engineering /	/ University of Electronic
	The University of Hong Kong	Science and Technology of
		China
Contact Information	elam@eee.hku.hk	bzwang@uestc.edu.cn
Co-investigator(s)		Dr. Haiyan Ou, Associate
(with title and		Professor, University of
institution)		Electronic Science and
		Technology of China

2. Investigator(s) and Academic Department/Units Involved

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1/1/2014		
Project Completion date	31/12/2017		
Duration (in month)	48		
Deadline for Submission of Completion Report	31/12/2018		

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. To advance the system architecture in OSH based on the time-reversal technique. We focus in particular on designing the optical transfer function (OTF) of the OSH system. The aim is to create an optimal scattered OTF to achieve the super-resolution with time reversal technique.

2. To advance the scanning mechanism and image reconstruction method in OSH based on time-reversal technique. This includes optical hardware modification, mathematical algorithms development, and software implementation.

3. To apply the time-reversal based OSH on fluorescent biological specimens. The aim is to demonstrate practical uses of the time-reversal based OSH.

5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

Through this project, we have made significant advancements concerning optical scanning holography. A major aspect of the research outcome relates to the algorithms and systems improvement for better imaging capabilities. These include:

- Defocus noise suppression
- Axial localization and resolution enhancement
- Lateral resolution enhancement
- Extended focused imaging
- Depth map generation
- Fast, non-adaptive imaging
- Compressive holographic imaging
- Autofocusing
- Edge extraction

Information concerning how these relate to the publications given in Part C has been discussed in 5.3 above.

Another aspect of the research outcome pertains to the application of the improved optical scanning holography technology. In many of the publications concerning algorithms and systems development, we have also shown the applicability of the technology through various experiments. In particular, we would like to highlight the development of subsampled scanning holographic imaging (SuSHI), which is published in the high impact journal Optica. It addresses a key technical challenge in fluorescent imaging involving a long scan time: prolonged laser scanning can cause damage to the

NSFC/RGC 8 (Revised 01/18)

specimen. Our solution comes in the form of computational imaging, where we adjust the hardware to scan in a spiral trajectory, and we make use of compressed sensing in image reconstruction. The net result is that we can capture as little as 4% of the full data – representing a 25-times speed-up – while maintaining the image quality.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

This project has resulted in a number of peer-reviewed journal publications and conference presentations, which together help push the technology and application of optical scanning holography for biomedical imaging. A number of directions are possible for further development. The first one concerns the SuSHI technology, where further research on adaptive scanning and multiple spiral patterns may lead to continuous imaging speed improvement and artifact suppression, eventually leading to real-time monitoring and tracking of dynamic specimens. A second direction is on improving image resolution. Recently, data-driven approaches involving machine learning have demonstrated dramatic results in many domains, and while some research groups have started to experiment with such methods for holographic imaging, there is much room to make use of the approach for resolution enhancement. A third direction is on capturing multispectral information. So far, the holograms and the reconstructed images are grayscale, but it is technically possible to enhance the system to capture the data at multiple wavelengths, leading to multispectral optical scanning holography, which may lead to new applications.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Different forms of optical imaging allow us to capture information about the world we live in, and holographic imaging in particular makes it possible to retain three-dimensional information. Optical scanning holography is one such technique, and is particularly powerful in imaging biological specimens that involve staining with fluorescent dyes. In this project, we have made several advances to the optical hardware and the software algorithms that significantly enhance the capability of this scanning holographic system, such as improving the image quality through noise suppression, better resolution in both axial and lateral directions, and faster imaging. These are achieved through a methodology known as computational optical imaging, where computational algorithms complement the optical system design in capturing information from the object and reconstructing such information for better visual quality. Consequently, such improvement in imaging capability is shown in the imaging of fluorescent specimens, where the benefit of faster scanning makes it possible to avoid damages to the object while allowing good image quality for our observations, in turn contributing to the advancement of life science as we can obtain more information about the specimens.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publica		Author(s)	Title and	Submitted to		Acknowledge	
Year of	Year of	Under	Under	(bold the	Journal/	RGC		d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the			institutional
	(For paper			belonging to	(with the	- 0		Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding		report)			
				author with an asterisk*)	publishing details				
				usierisk ·)	specified)				
2015				Haiyan	"Defocus	Yes	No	Yes	Yes
2015				Ou *, Huiyu		(2015)	110	105	105
				Pan,	suppressio	````			
				Edmund Y.					
				Lam, and	combined				
				Bing-Zhon	frame				
				g Wang	difference				
					and				
					connected				
					componen				
					t methods				
					in optical				
					scanning				
					holograph				
					y," Optics				
					Letters,				
					vol. 40,				
					no. 17,				
					4146–414				
					9,				
					Septembe				
					r 2015.				

2015			Antony C.S.	"Arbitrary	Vac	No	Yes	Yes
2013			Chan, Andy		(2015)	140	105	103
				nsional	(2013)			
				spectrally				
			K.Y. Wong,					
			Edmund Y.					
			Lam, and	generation				
			Kevin K.	—a new				
			Tsia*	strategy				
				for				
				high-spee				
				d				
				patterned				
				illuminati				
				on				
				imaging,"				
				Optica,				
				vol. 2, no.				
				12, pp.				
				1037–104				
				4, D				
				December				
0016				2015.	N.Y.	X 7	* 7	* 7
2016			Ni Chen,		No	Yes	Yes	Yes
			Zhenbo	on				
				enhancem				
			Haiyan Ou,					
				optical				
			Edmund Y.					
			Lam*	holograph				
				y with a				
				spiral				
				modulated				
				point				
				spread function,"				
				Photonics				
				Research,				
				vol. 4, no.				
				1, pp.				
				1 6				
				1–6,				
				1–6, February 2016.				

2016	Zhenbo	"Extended	No	Yes	Yes	Yes
2010	Ren, Ni	focused	110	105	100	100
	Chen, and	imaging				
	Edmund Y.					
	Lam*	map				
	Lam	reconstruc				
		tion in				
		optical				
		scanning				
		holograph				
		y,"				
		y, Applied				
		Optics,				
		vol. 55,				
		no. 5, pp.				
		1040–104				
		7,				
		February				
		2016.				
2016	Ni Chen,	"High-res	No	Yes	Yes	Yes
	Zhenbo	olution				
	Ren, and	Fourier				
	Edmund Y					
	Lam*	synthesis				
		from				
		photograp				
		hic				
		images				
		through				
		computin				
		g the light				
		field,"				
		Applied				
		Optics,				
		vol. 55,				
		no. 7, pp.				
		1751–175				
		6, March				
		2016.				

2016	Antone C C	"Chaama	No	Vac	Vaa	Vac
2016	Antony C.S.		NO	Yes	Yes	Yes
	Chan,	led .				
	Kevin K.	scanning				
	Tsia, and	holograph				
	Edmund Y.					
	Lam*	imaging				
		(SuSHI)				
		for fast,				
		non-adapt				
		ive				
		recording				
		of				
		three-dim				
		ensional				
		objects,"				
		Optica,				
		vol. 3, no.				
		8, pp.				
		o, pp. 911–917,				
		August 2016.				
2017			NT	X 7	X 7	X 7
2017	Antony C.S.		No	Yes	Yes	Yes
	Chan,	ve pixel				
	Ho-Cheung					
	Ng, Sharat	lution of				
	C.V.	time-stret				
	Bogaraju,	ch				
	Hayden	imaging,"				
	KH. So,	Scientific				
	Edmund Y.	Reports,				
	Lam, and	vol. 7, pp.				
	Kevin K.	44608,				
	Tsia*	March				
		2017.				
2017	Ni Chen*,	"Analysis	No	Yes	Yes	Yes
	Zhenbo	of the				
	Ren, Dayan					
	Li,	backproje				
	Edmund Y.					
	Lam, and	field				
	Guohai Situ	acquisitio				
	Outiliar Situ	n and its				
		optimizati				
		on,"				
		Applied				
		Optics,				
		vol. 56,				
		no. 13,				
		pp.				
		F20–F26,				
		May 2017.				

2017	Thanks "A	tomati No	Yes	Yes	Yes
2017			res	res	res
		cusing			
	Chen, and for	·····			
	Edmund Y. mul				
	Lam* ona				
		ects in			
	digi				
		ograph			
	y us	ing			
	the				
		cture			
		or,"			
	Opt				
	Lett				
	vol.	42,			
		9, pp.			
		0–172			
	3, N				
	201				
2018	Haiyan "Ax		Yes	Yes	Yes
		lizatio			
	Wu, n us				
	Edmund Y. time	;			
		ersal			
	Bing-Zhon mul				
	g Wang sign				
	clas	sificat			
	ion	in			
	opti	cal			
	scar	nning			
	holo	ograph			
	," O	ptics			
		ress,			
		26,			
		4, pp.			
	375	c 277			
	515	6-377			
	1, F				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the			institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			

July/2014/S	High-resolution	OSA Topical Meeting	Yes (2015)	No	Yes	Yes
eattle		in Signal Recovery	100 (2013)	110	100	100
cattic	using a	and Synthesis				
	configurable	and Synthesis				
	U U					
	pupil in a					
	scanning					
	holographic					
L 1 /0014/0	microscopy		XX (2015)	N.T.	37	X 7
July/2014/S	Reducing the	OSA Topical Meeting	Yes (2015)	No	Yes	Yes
eattle		in Signal Recovery				
	of optical	and Synthesis				
	scanning					
	holography by					
	compressed					
	sensing					
July/2014/S	Computational	OSA Topical Meeting	Yes (2015)	No	Yes	Yes
eattle	sectioning and	in Digital Holography				
	resolution	and				
		Three-Dimensional				
	optical scanning	Imaging				
	holography					
September/2		The Japan Society of	Yes (2015)	No	Yes	Yes
014/Sapporo		Applied Physics and				
	optical scanning	The Optical Society				
	holography	Joint Symposia				
October/201	Signal reduction	SPIE Real-time	Yes (2015)	No	Yes	Yes
4/Beijing	in fluorescence	Photonic				
	imaging using	Measurements, Data				
	radio	Management, and				
	frequency-multi	Processing				
	plexed	C C				
	excitation by					
	compressed					
	sensing					
May/2015/S		OSA Topical Meeting	Yes (2015)	No	Yes	Yes
hanghai		in Digital Holography	. ,			
U	holography	and				
	based on	Three-Dimensional				
	entropy	Imaging				
	minimization	8				
May/2015/S		OSA Topical Meeting	Yes (2015)	No	Yes	Yes
hanghai	*	in Digital Holography	()			
	optical scanning					
		Three-Dimensional				
	a spiral phase	Imaging				
	plate	B				
May/2015/S	1	OSA Topical Meeting	Yes (2015)	No	Yes	Yes
hanghai	based on	in Digital Holography				
	aperture	and				
	synthesis in	Three-Dimensional				
	optical scanning					
	holography	11111161116				
September/2		IEEE International	Yes (2015)	No	Yes	Yes
	focused imaging		105 (2013)	110	105	103
015/wiacau		Imaging Systems and				
	microscopy	Techniques				
	imaging system	reeninques				
L	maging system		l	l		l

February/20		SPIE High-Speed	No	Yes	Yes	Yes
16/San	super-resolution	Biomedical Imaging				
Francisco	of time-stretch	and Spectroscopy:				
	imaging by an	Toward Big Data				
	equivalent-time	Instrumentation and				
	sampling	Management				
	concept					
October/201	Super-resolution	SPIE Holography,	No	Yes	Yes	Yes
6/Beijing	imaging in	Diffractive Optics,				
	optical scanning	and Applications				
	holography					
	using structured					
	illumination					
May/2017/N	Computational	IAPR Conference on	No	Yes	Yes	Yes
agoya	single-cell	Machine Vision				
	classification	Applications				
	using deep					
	learning on					
	bright-field and					
	phase images					
May/2017/J	Edge-preserving	OSA Topical Meeting	No	Yes	Yes	Yes
eju Island	autofocusing in	in Digital Holography				
	digital	and				
	holography	Three-Dimensional				
		Imaging				
May/2017/J	Enhanced edge	OSA Topical Meeting	No	Yes	Yes	Yes
eju Island		in Digital Holography				
	spiral phase	and				
	plate in optical	Three-Dimensional				
	scanning	Imaging				
	holography					
	based on					
	gaussian beam					
	apodization					
August/2017		24th Congress of the	No	Yes	Yes	Yes
/Tokyo	super-resolution					
	for ultrafast	Commission for				
	optical	Optics				
	time-stretch					
	imaging					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for		Date of thesis submission/ graduation
CHAN Chi Shing Antony	PhD	September 2012 – August 2016	August 2016
REN Zhenbo	PhD	September 2014 – August 2018	August 2018

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

This project has enabled collaboration with Dr. Ni Chen, currently a visiting scholar at Seoul National University, on leave from the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science.