RGC Ref.: N_HKU710/15 NSFC Ref. : 61531166004

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Photonic Integration in GaN Membranes on Silicon

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof Choi Hoi Wai	Prof Wang Yongjin
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Electrical and Electronic	College of
Institution	Engineering, The University	Telcommunications and
	of Hong Kong	Information Engineering,
		Nanjing University of Post
		and Telecommunications
Contact Information	852-39172693	wangyj@njupt.edu.cn
	hwchoi@hku.hk	
Co-investigator(s)		
(with title and		
institution)		

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01/01/2016		
Project Completion date	31/12/2019		
Duration (in month)	48		
Deadline for Submission of Completion Report	31/12/2020		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To develop high-efficiency photonic crystal edge-emitting light-emitting diodes on GaN thin-film membranes from GaN-on-Si materials
 - 2. To develop photonic components such as waveguides on GaN thin-film membranes
 - 3. To integrate active (such as LEDs) and passive (such as waveguides) components on the same GaN membranous platform.
 - 4. To demonstrate applications of the integrated GaN membranous platform such as optical communications.

NSFC/RGC 8 (Revised 01/18)

_

5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change: _____

6. Research Outcome

Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

The project aimed at exploring the possibilities of enabling additional devices on a chip-scale GaN platform for enabling enhanced functionalities through the monolithic integration approach, and it has successfully achieved its goals. It has been demonstrated that multiple types of devices, including light-emitting diodes, photodetectors, waveguides and microdisk resonators can co-exist on a single GaN-based wafer to perform functions beyond what the wafer was intended to do. Three major integrated platforms have been demonstrated, described as follows:

(1) LED, PD and Waveguide photonic systems for on-chip-visible light

communications: The characteristics of monolithically integrated light-emitting diodes (LEDs), photodetectors (PDs), and waveguides on a GaN-on-Si wafer are investigated. The InGaN/GaN multi-quantum wells which are responsible for blue light emission in the LED are also used for photodetection in the PD. The PDs can be detached from the substrate and re-mounted on an elevated platform, owing to the flexibility of the thin-film waveguide. The LEDs and PDs exhibit rapid response on the nanosecond time-scale attributed to fast radiative recombination as well as minimized RC delays, enabling transmission of pseudo-random binary sequence (PRBS) data signals at rates of 250 Mbit/s with an opening in the eye diagram. Together with cross-talk free multi-channel transmission, the capability of the planar and 3D monolithic photonic systems for visible-light communication (VLC) applications is demonstrated.

(2) LED and PD integrated systems for light-intensity stabilization: To overcome light output degradations and fluctuations of intensities from light-emitting diodes (LEDs) over time, the monolithic integration of InGaN LEDs and photodetectors (PDs) is demonstrated. The InGaN/GaN multi-quantum wells (MQWs) play the role of light emission and detection from the LED and PD respectively. The tiny-sized PD detects light from the adjacent LED coupled through the sapphire substrate to generate a photocurrent that is proportional to its light output, but remains unresponsive to ambient lighting. The photocurrent can be used as a feedback signal for regulation of light output. A micro-controller based feedback circuit has been implemented to drive the LED; the photocurrent level is maintained to a preset value by adjustment of the driving current. Using this scheme, light output from the LED has been stabilized to within ~0.2% over 1 hour periods.

(3) **Microdisk-waveguide integration for lasing applications**: In this work, a waveguide with a width of 0.16 μ m coupled to a microdisk with a diameter of 10 μ m is fabricated on a 0.77 μ m thick GaN thin film containing InGaN/GaN multi-quantum wells. The waveguide is connected directly to the microdisk at the circumference forming a coupling junction, eliminating the need for precision patterning as with evanescent coupling schemes whereby gaps of the order of tens of nanometers between the waveguide and resonator must be maintained. The fabrication was carried out using nanosphere and nanowire lithography. Non-evanescent coupling of whispering-gallery modes (WGMs) to the waveguide from the microdisk is successfully demonstrated.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The findings have verified the feasibilities of developing monolithically-integrated GaN photonic systems for achieving a variety of functions. Based on the observations arising from the work, the following scopes for further development are proposed:

(1) Monolithic integration of electronics and optoelectronics on a common GaN platform: Despite the success of GaN optoelectronics and electronics, the two technologies have been developed independent of each other. Nevertheless, optoelectronics and electronics are often dependent on each other in many real-life applications. In the simplest case, the LEDs have to be driven by LED drivers, which are essentially transistor-based circuits. However, LEDs are typically driven by a separate driver circuit which is typically fabricated on the Si platform (as with most electronics circuitry). If optoelectronics and electronics can be integrated onto the same platform (wafer), that would result in significant reduction in material costs (same wafer), processing costs (same wafer processing) and packaging costs (single chip).

(2) Hybrid monolithic and heterogeneous integration: Each form of integration has its merits, thus we should not restrict ourselves to one form of integration. As such, we propose a hybrid scheme of integration, where components are monolithically-integrated onto a single GaN wafer where possible (such as LEDs, PDs, waveguides, microdisks), and the other components through heterogenous integration (such as resistors, op-amps, ICs etc). Tight integration can be achieved through flip-chip bonding scheme.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Many of the commonly-used electronics appliances used today rely on GaN technology in one way or another, including InGaN lighting-emitting diodes (LEDs) for lighting and displays, GaN photodetectors for optical sensing, InGaN laser diodes (LDs) in blu-ray players and recorders, as well as AlGaN/GaN transistors in compact chargers. Although GaN devices span the electronics and optoelectronics sectors, the different types of devices have been developed mostly separately from each other, despite the close relation between them. This project has successfully opened the avenue towards tightly integrating two or more of such GaN devices on a single wafer towards achieving enhanced functionalities compared to the individual devices. For instances, LEDs, PDs and waveguides have been integrated to form photonic systems capable for high-speed visible-light on-chip optical communications. Additionally, PDs have been monolithically-integrated adjacent to LEDs for monitoring the light output on a real-time basis. Together with a control and driver circuit, the intensity and colour chromaticity can be stabilized both on a short and long durations.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's *funding support by quoting the specific grant reference.*)

Th	a Latast Status	of Publico	tions	Author(a)	Title and	Submitted to	Attachad	Aaknowladge	Accessible
Veeref	Vaar of	Under	I Inden	Aution(s)	Inte allu	PCC	to this	d the support	from the
rear of	A coontonco	Dilder	Propagation	authors	Book	(indicate the	report (Vas	of this Joint	institutional
publication	<i>(Early and an an</i>	Keview	rieparation	helonging to	book	(indicute the	or No)	Docoarah	rapagitary
	(For paper		(ontional)	the project	(with the	year enaing	$0^{\prime} N^{\prime} 0^{\prime}$	Sahama	(Vas or No)
	accepted but		(opiionai)	toama and	volume,	oj ine		(Vag or No)	(<i>Tes or No</i>)
	noi yei			deums ana	pages ana	reievani		(Tes or NO)	
	published)			aenote the	other	progress			
				corresponding	necessary	report)			
				author with an	publishing				
				asterisk*)	details				
2010					specified)				
2018				Y. Park, K.H.	"Packaging	No	Yes	Yes	Yes
				Li, W.Y. Fu,	of InGaN				
				Y.F. Cheung	stripe-shape				
				and H.W.	d				
				Choi*	light-emittin				
					g				
					Diodes",				
					Applied				
					Optics 57,				
					2452				
2018				K. H. Li, W.	Monolithica	No	Yes	Yes	Yes
				Y. Fu, Y. F.	lly				
				Cheung, K. K.	integrated				
				Y. Wong, Y.	InGaN/GaN				
				Wang, K. M.	light-emittin				
				Lau, and H.	g diodes.				
				W. Choi*	photodetecto				
					rs, and				
					waveguides				
					on Si				
					substrate				
					Ontica 5				
					564				
					501				
2010				кнін	Intensity Sta	No	Vec	Vec	Vec
2019				\mathbf{L}_{1} W V E ₁	hilized	110	105	105	105
				$V \in Choung$	I EDa With				
				I.F. Cheung	LEDS WITH				
				and H.W.					
				Cn01*	lly				
					Integrated				
					Photodetect				
					ors, IEEE				
					Transactions				
					on Industrial				
					Electronics,				
1					66, 7426				
1									

1	1						1	1
2018			K.H. LI, Y.F. Cheung, W.Y. Fu, K.K.Y. Wong, and H.W. Choi *	Monolithic Integration of GaN-on-Sap phire Light-Emitti ng Diodes, Photodetect ors, and Waveguides , IEEE Journal of Selected Topics in Quantum Electronics 24, 3801706	No	IY es	Y es	IY es
2020			K.H. Li, Y.F. Cheung, W. Jin, W.Y. Fu, A.T.L. Lee, S.C. Tan, S.Y. Hui and H.W. Choi*	InGaN RGB Light-Emitti ng Diodes With Monolithica lly Integrated Photodetect ors for Stabilizing Color Chromaticit y, IEEE Transactions on Industrial Electronics, 67, 5154	No	Yes	Yes	Yes
2020			C.H. To, W.Y. Fu, K.H. Li, Y.F. Cheung and H.W. Choi*	GaN microdisk with direct coupled waveguide for unidirection al whispering- gallery mode emission, Optics Letters 45, 791	No	Yes	Yes	Yes
2020			K.H. Li, W.Y. Fu and H.W. Choi*	Chip-scale GaN Integration, Progress in Quantum Electronics 70, 100247	No	Yes	Yes	Yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC (indicate the year ending of the	to this report <i>(Yes or No)</i>	the support of this Joint Research	from the institutional repository (Vas or No)
			relevant progress report)		(Yes or No)	(10)
May/2016/	GaN	4th International	Yes	No	Yes, during	Yes
Yokohama,	light-emitting	Conference on			oral	
Japan	diode with	Light-Emitting			presentation	
	monolithically-i	Devices and Their				
	ntegrated	Industrial				
	photodetector	Applications				
Ju1/2017/	3D GaN	(LEDIA 10) 12 th International	Ves	No	Ves during	Ves
Strashourg	Photonic	Conference on Nitride	1 03	110	oral	105
France	Integrated	Semiconductors			presentation	
1 Tullee	Circuits	Senneenauerens			presentation	
Oct/2016/	Monolithically-i	International	No	Yes	Yes, during	Yes
Orlando,	ntegrated GaN	Workshop on Nitride			oral	
USA	Photonic	Semiconductors 2016			presentation	
	Systems					
Jun/2018/	Monolithic	16 th International	No	Yes	Yes, during	Yes
Sheffield,	Integration of	Symposium on the			oral	
UK	GaN	Science and			presentation	
	Light-emitting	Technology of				
	Diodes and	Lighting				
	Photodetectors					
	and their					
	Applications	4				
Jul/2019/	GaN Bipolar	13 ^{un} International	No	Yes	Yes, during	Yes
Bellevue,	Junction	Conference on Nitride			oral	
USA	Transistor for	Semiconductors			presentation	
	Monolithic					
	Integration					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Zhang Yiyun	PhD	1 Nov 2012	Oct 2016
Feng Cong	PhD	1 Sep 2012	Sep 2016
Park Yonghua	MPhil	1 Sep 2015	Aug 2017
To Chap Hang	PhD	1 Dec 2015	May 2020

NSFC/RGC 8 (Revised 01/18)

- **11. Other impact** (e.g. award of patents or prizes, collaboration with other research institutions. technology transfer, etc.)
- US Patent Application "Light-emitting Diodes (LEDs) with Monolithically-integrated Photodetectors for in situ real-time intensity monitoring:, US 2019/0157508 A1
- **12. Statistics on Research Outputs** (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed journal publications	Conference papers	Scholarly books. monographs and chapters	Patents awarded	Other research outputs (Please specify)
No. of outputs arising directly from this research project [or conference]	7	5			