RGC Ref.: N_HKU709/12 NSFC Ref. : 51261160496

(please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(*Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher*)

Part A: The Project and Investigator(s)

1. Project Title: Design of high performance organic solar cell structures with newly proposed polymer materials to beyond 10% efficiency

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team			
Name of Principal	Prof. Wallace C.H. Choy	Dr. Lijun Huo			
Investigator (with title)					
Post	Associate Professor	Associate Professor			
Unit / Department /	Department of Electrical and	Institute of Chemistry,			
Institution	Electronic Engineering, The	Chinese Academy of			
	University of Hong Kong	Sciences/ BeiHang University			
Contact Information	Same as above	Same as above			
Co-investigator(s)	Prof. Weng Cho Chew				
(with title and	Chair Professor				
institution)					

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	1 Jan 2013		
Project Completion date	31 Dec 2016		
Duration (in month)	48 months		
Deadline for Submission of Completion Report	30 Sept 2017		

NSFC/RGC 8 (Revised 10/15)

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- 1. Schemes for realizing high performance thin-film OSCs

In order to achieve thin-film OSCs with PCE over 10% for practical photovoltaics, the team from Institute of Chemistry (IoC) and the University of Hong Kong (HKU) will work closely together from materials to device structures. IoC team will propose and optimize new polymer donors and pay particularly attention to (a) strong and wideband light absorption, (b) low HOMO and thus high *Voc*, and (c) high hole mobility. HKU team will propose (d) novel plasmonic nanomaterials and nanostructures incorporated to

polymer active layers for achieving the broadband absorption enhancement, and will introduce and optimize new (e) carrier transport layers and (f) transparent electrodes for achieving high efficiency OSCs. (Note: Details of the research objectives, plan and methodology of IoC team can be found from the NSFC-RGC proposal submitted by Prof. Huo.)

2. Novel plasmonic nanomaterials and nanostructures for the broadband absorption enhancement

We propose a new light trapping scheme of *double* plasmonic nanomaterials and nanostructures incorporated to the OSC active layer made from the new polymers of IoC for realizing the broadband absorption enhancement. The *double* plasmonic nanomaterials and nanostructures can be metal NPs, metal nanogratings, ordered metal nanopatterns, etc.

3. Low-temperature solution-processed metal-oxide-based CTLs doped with metal NPs While metal oxides can function as CTLs of organic optoelectronic devices, the annealing temperature required for forming good metal-oxide-based CTLs is typically over 200degC, which may degrade the properties of underneath organic materials. We will develop new solution-based approaches to synthesize metal oxides with good carrier transport properties. For the formation of CTLs using our metal oxides, the annealing temperature with a magnitude < 100degC will be committed while our target is towards room temperature treatment. Importantly, through incorporating metal NPs into our newly synthesized metal oxides, we will further improve CTL electrical properties and the energy alignment with active layer.

4. Transparent electrodes for carrier collection

We will propose flexible, transparent and conductive electrodes composed from graphene and metal nanomaterials (e.g. metal NPs and nanowires). The metal nanomaterials offer very strong scattering and thus enhance transmission properties. By combining with graphene, we will investigate the optical transmission, electrical conduction and workfunction alignment of the composite with the adjacent layer (i.e. CTL or polymer active layer). Through the detailed studies of the transparent electrode of graphene–metal nanomaterial composites together with the novel polymer donors and the new approaches in improving the properties of active layer and CTLs described above, we aim to develop high performance OSCs for practical photovoltaics.

5.2 Revised Objectives

Date of approval from the RGC: <u>N.A.</u>

Reasons for the change: N.A.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

In order to achieve OSCs with PCE over 10%, the HKU team has studied the materials and layer systems of OSCs through introducing metal nanomaterials and nanostructures to the active layer and carrier transport layer and designing new class of electrodes. In this project, we demonstrate that

- Through incorporating new plasmonic metal nanomaterials system of Au nanostars, and Ag dual nanoparticle and nanograting into OSCs, we can achieve wideband absorption enhancement [Adv. Opt. Mat., 3, 1220, 2015; Small, 12, 5200, 2016.]. We also demonstrate that a proper design of the metal nanomaterial system in OSCs, the electronic properties of active layer can be improved through balancing the (electron and hole) electrical properties [Sci. Rep., 5, 8525, 2015; IEEE J. Selected Topics Quant. Elect., 10.1109/JSTQE.2015.2442679; Small, 12, 1547, 2016; Nanoscale, 7, 11291, 2015]. Three works on the plasmon-optical and electrical effects have been features as cover stories [Adv. Opt. Mat., 3, 1220, 2015; Small, 12, 5200, 2016; IEEE J. Selected Topics Quant. Elect., 10.1109/JSTQE.2015.2442679], and one of our work has been highlighted in research news in MaterialsViewsChina.com published by Wiley [Small, 12, 5200, 2016]. The PCE of our plasmonic OSCs has reached over 10.5% [Small, 12, 5200, 2016] which from our understanding is the best reported plasmonic OSCs in the world.
- 2. Plasmonic metal nanostructures embedded in carrier transport layers (CTLs) can improve the device performances by hot carrier effects [Adv. Funct. Mat., 23, 4255, 2013], charge accumulation effects [Energy Environ. Sci., 6, 3372, 2013]. Meanwhile, simultaneous plasmon -optical and -electrical effects can be achieved through incorporating nanostars in CTLs and active layer at the same time [Small, 12, 5200, 2016]. To extend the application of metal nanomaterials in CTLs, a series of low-temperature solution processed metal oxides with good electrical properties and transparent have been developed [Adv. Mat., 27, 2930, 2015; Light: Science & Applications, 4, 6236, 2014; J. Mat. Chem. A, 3, 23955, 2015].
- 3. A new class of macroscopically periodic and microscopically random metal nanostructures have been experimentally demonstrated [Sci. Rep., 5, 7876, 2015.]. We also theoretically study the plasmonic properties of the new structure [Nanoscale, 7, 16798, 2015.]. By integrating Ag nanoparticles and nanowires together, we also demonstrate high efficient Ag nano-network electrode [Adv. Function. Mat. 25, 4211, 2015]. The light trapping of transparent electrode is further improved by 32% through a new system of hybrid metal/nanoparticle/dielectric nanostructure [Nano Energy, 17, 187, 2015.]. One of our work on transparent electrode has been featured as cover story [Adv. Function. Mat. 25, 4211, 2015].

Potential for further development of the research and the proposed course of action *(maximum half a page)*

For the future development and practical applications of OSCs, it would be good to study:

- 1. Further improvement of power conversion efficiency toward 15%
- 2. Stability of devices, and
- 3. Large scale devices.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Organic solar cells (OSCs) have been widely investigated for the next generation of large area, low cost and flexible photovoltaic devices. However, most of the polymer active layer of OSCs is only about 100 to 300nm thickness. In order to increase the optical absorption of OSCs, new plasmonic metal nanostructures of nanostars and dual metal nanostructures have been incorporated into OSCs to improve light absorption. We also demonstrate that the plasmonic metal nanostructure can be used to improve the extraction of photogenerated carriers from active layer to electrode by the effects of hot carriers and carrier accumulation induced by plasmonic metal nanostructures embedded in carrier transport layers. Meanwhile, we design a new class of transparent flexible electrode and new scheme to improve the light trapping of transparent electrode by as much as 32%. By introducing and optimizing multiple plasmonic metal nanostructures in different layers and regions of OSCs, we have achieved PCE of 10.5% which is the best plasmonic OSCs in the world. Four of our work have been features as cover story and one has been highlighted as research news by Wiley.

Part C: Research Output

- **8.** Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's *funding support by quoting the specific grant reference.*)
- *** It is important to note that the output listed below is from *1 Jan 2016 to 31 Dec 2016*. For the publications from 1 Jan 2013 to 31 Dec 2014 were stated in mid-term report. It should be noted that the works are supported by the NSFC-RGC fund from RGC and other external funds.***

The Latest S	tatus of Public	ations		Author(s)	Title	and	Submitted to	Attached	Acknowled	Accessible
Year of	Year of	Under	Under	(bold	the	Journal/		RGC	to this	ged the	from the
publication	Acceptance	Review	Preparation	authors		Book		(indicate the	report (Yes	support of	institutional
	(For paper			belongir	ig to	(with	the	year ending	or No)	this Joint	repository
	accepted but		(optional)	the	project	volume,		of the		Research	(Yes or No)
	not yet		-	teams	and	pages	and	relevant		Scheme	
	published)			denote	the	other		progress		(Yes or	
				correspo	onding	necessar	у	report)		No)	
				author v	vith an	publishin	ıg				
				asterisk	*)	details					
						specified	9				

	T				.	. .	••	
2016			T. Liu, X.	"Alkyl	N. A.	Yes	Yes	Yes
				Side-Chai				
			Meng, Y.					
				Engineeri				
			Wei, W.	ng in				
			Ma, L.	Wide-Ban				
			Huo*, X.	dgap				
				Copolyme				
			Lee, M.					
			Huang, H.	Leading				
			Choi, J.Y.	to Power				
			Kim,	Conversio				
			W.C.H.	n				
			Choy, and					
			Y. Sun*	es over				
			1.541	10%",				
				Adv. Mat.				
				DOI:				
				10.1002/a				
				dma.2016				
0010			V D I	04251.	NT 4	X 7	X 7	X 7
2016			X. Ren, J.		N. A.	Yes	Yes	Yes
				Efficiency				
				Organic				
			Li, T. Rao,					
			L. Huo, J.					
			Hou,	Achieved				
			W.C.H.	by the				
			Choy*	simultane				
				ous				
				Plasmon-				
				Optical				
				and				
				-Electrical				
				Effects				
				from				
				Plasmonic				
				Asymmetr				
				ic Modes				
				of Gold				
				Nanostars				
				", Small,				
				vol. 12,				
				No. 37, pp				
				5200-520				
				7 7				

2016		W.C.H.	 "Plasmon-	N. A.	Yes	Yes	Yes
		Choy*,	Electrical				
		Ren	Effects on				
			Organic				
			Solar				
			Cells by				
			Incorporat				
			ion of				
			Metal				
			Nanostruc				
			tures",				
			IEEE J.				
			Selected				
			Topics				
			Quant.				
			Elect.,				
			10.1109/J				
			STQE.20				
			15.24426				
			79.				
2016		G. Luo,		N. A.	Yes	Yes	Yes
		Ren,	advances				
		Zhang,	in organic				
		Wu*,	photovolt				
		W.C.H.	aic:				
		Choy*,	device				
		He*,	structure				
		Cao	and				
			optical				
			engineerin				
			g				
			optimizati				
			on in				
			nanoscale				
			", Small,				
			vol. 12,				
			pp.				
			1547–157				
			1.				

0.01 5					37	3.7	X 7
2015		J. Cheng, F.		N. A.	Yes	Yes	Yes
		Xie, Y. Liu,					
		W.E.I. Sha,	Transport				
		X. Li, Y.					
			with				
			Widely				
		Choy*	Tunable				
			Work				
			Function				
			for Deep				
			HOMO				
			Level				
			Organic				
			Solar				
			Cells,				
			2015, J.				
			2013, J. Mat.				
			Chem. A,				
			vol. 3, pp.				
			23955–23				
			963.				
2015		H. Lu, X.	"Broadba	N. A.	Yes	Yes	Yes
		Ren, W.E.I.					
			near-field				
		Ho, W.C.H.					
			macro-per				
			iodic and				
			micro-ran				
			dom				
			structure				
			with a				
			hybridize				
			d				
			excitation				
			of				
			propagati				
			ng				
			Bloch-Pla				
			smonic				
			and				
			localized				
			surface-pl				
			asmonic				
			modes",				
			Nanoscale				
			, vol. 7,				
		1	16798.				

2015	Li, and W.C.H. Choy*	"Optically N. A. Enhanced Semi-Tra nsparent Organic Solar Cells through Hybrid Metal/Na noparticle /Dielectric Nanostruc ture", Nano Energy, vol. 17, pp. 187–195.	Yes	Yes	Yes
2015	Li, S. Zhang, X. Ren, J. Cheng, L. Zhu, D. Zhang, L.	"Synergic N. A. Effects of Randomly Aligned SWCNT Mesh and Self-Asse mbled Molecule Layer for High-Perf ormance Low Band-Gap Polymer Solar Cells with Fast Charge Extraction ", Adv. Mat. Interface, vol. 2, pp. 1500324.	Yes	Yes	Yes

	<u>г</u>	тт т	D "L	NT A	Vac	Vac	Vac
2015				N. A.	Yes	Yes	Yes
		Zhang,	J. Welded				
		Cheng,	J. Silver				
			Iao, Nano-Net				
			H. work				
		Choy*	Transpare				
			nt				
			Electrodes				
			with High				
			Operation				
			al				
			Stability				
			by a				
			Simple				
			Alcohol-b				
			ased				
			Chemical				
			Approach				
			", Adv.				
			Function.				
			Mat. vol.				
			25,				
			pp.4211-4				
		X7 X •	218.		X 7	X 7	X 7
2015		X. Li,	X. "An	N. A.	Yes	Yes	Yes
		Ren,	Y. all-copper				
		Zhong X	nlacmonic				
		Zhang,*	plasmonic				
		W.C	H. sandwich				
		W.C Choy,*	H. sandwich B. system				
		W.C	H. sandwich B. system through				
		W.C Choy,*	H. sandwich B. system through directly				
		W.C Choy,*	H. sandwich B. system through				
		W.C Choy,*	H. sandwich B. system through directly depositing copper				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on				
		W.C Choy,*	H. sandwich B. system through directly depositing copper				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio n in				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio n in SERS",				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio n in SERS", Nanoscale				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio n in SERS", Nanoscale , vol. 7,				
		W.C Choy,*	H. sandwich B. system through directly depositing copper NPs on CVD grown graphene/ copper film and its applicatio n in SERS", Nanoscale				

201	[[V I: V	"I li ab	NL A	Vac	Vac	Vac
2015		X. Li, X.	High	N. A.	Yes	Yes	Yes
		Ren, F. Xie,					
		Y. Zhang*,	ce				
		T. Xu, B.					
		Wei*,	Solar				
		W.C.H.	Cells with				
		Choy*	Broadban				
			d				
			Absorptio				
			-				
			n Enhanaam				
			Enhancem				
			ent and				
			Reliable				
			Reproduci				
			bility				
			Enabled				
			by				
			Collective				
			ly				
			Plasmonic				
			Effects",				
			Adv. Opt.				
			Mat. vol.				
			3, pp.				
			1220-123				
			1.				
2015			"Post-Tre	N. A.	Yes	Yes	Yes
		W.C.H.	atment-Fr				
		Choy*, X.	ee				
		Li, D.	Solution				
		Zhang, J.	Processed				
			Non-Stoic				
		Cheng	NUII-Store				
1		Cheng					
		Cheng	hiometric				
		Cheng	hiometric NiOx				
		Cheng	hiometric NiOx Nanoparti				
		Cheng	hiometric NiOx Nanoparti cles for				
		Cheng	hiometric NiOx Nanoparti cles for Efficient				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic				
		Cheng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic Devices",				
		Chichig	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic Devices", Adv.				
		Chieng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic Devices", Adv. Mat., vol.				
		Chieng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic Devices", Adv. Mat., vol. 27,				
		Chieng	hiometric NiOx Nanoparti cles for Efficient Hole Transport Layers of Organic Optoelectr onic Devices", Adv. Mat., vol.				

2015		W.E.I.	Sha	"Δ	N. A.	Yes	Yes	Yes
2015				General	N. A.	105	105	105
				Design				
				Rule to				
				Manipulat				
		Choy*		e ·				
				Photocarri				
				er				
				Transport				
				Path in				
				Solar				
				Cells and				
				Its				
				Realizatio				
				n by the				
				Plasmonic				
				-Electrical				
				Effect",				
				Scientific				
				Reports,				
				vol. 5,				
				p.8525.				
2015		ΗIυ		"Experim	ΝΔ	Yes	Yes	Yes
2013		Ren W	, <u>A</u> . / E	ental and	14. 71.	103	105	103
				Theoretic				
		Chen,	, J. Z.					
		Kang,		Investigati				
		Zhang,						
				Macro-Pe				
		H. Choy		riodic and				
		Π . Choy		Micro-Ra				
				ndom				
				Nanostruc				
				tures with				
				Simultane				
				ously				
				Spatial				
				Translatio				
				nal				
				Symmetry				
				and				
				Long-Ran				
				ge Order				
				Breaking"				
				,				
				Scientific				
				Reports,				
				DOI:				
				10.1038/s				
1								

2015		X.C.	Li,	"MoOx	N. A.	Yes	Yes	Yes
		F.X.	Xie,	and V2Ox				
		S.Q. Z	Zhang,	as Hole				
		J.H.	Hou,					
		W.C.H	ł.	Electron				
		Choy*	:	Transport				
				Layers				
				through				
				Functiona				
				lized				
				Intercalati				
				on in				
				Normal				
				and				
				Inverted				
				Organic				
				Optoelectr				
				onic				
				Devices",				
				(Nature				
				Publishin				
				g Group)				
				Light:				
				Science &				
				Applicatio				
				ns, doi:				
				10.1038/ls				
				a.2015.46.				

2014	H. Lu, D.	Selective	N.A	No	Yes	Yes
	Zhang, X.	Growth				
	Ren, J. Liu,	and				
	W. C. H.	Integration				
	Choy*	of Silver				
	5	Nanopartic				
		les on				
		Silver				
		Nanowires				
		at Room				
		Conditions				
		for Transparen				
		t				
		Nano-Net				
		work				
		Electrode,				
2014	X.C. Li,	ACS Nano,	N.A.	No	Yes	Yes
	F.X. Xie,	vol 8 pp				
	S.Q. Zhang,	10980-109				
	J.H. Hou	87.				
	and W.C.H.					
	Choy*	eV				
		Workfuncti				
		on Tuning				
		of Cesium				
		Intercalate				
		d Metal				
		Oxides for				
		Functionin				
		g as Both				
		Electron				
		and Hole				
		Transport				
		Layers in				
		Organic				
2014	W.E.I. Sha,	Optoelectr	N.A.	No	Yes	Yes
2014	X. Li,	onic	14.23.	110	105	103
		Devices,				
	W.C.H.	Adv.				
	Choy*	Function.				
		Mat.,				
		vol.24, pp.				
		7348–7356				
		Breaking				
		the Space				
		Charge				
		Limit in				
		Organic				
		Solar Cells				
		by a Novel				
		Plasmonic-				
		Electrical				
		Concept",				
		Scientific				
		Reports,				
		vol. 4, p.				
		6236 (10pp).				
	1	μ (Upp)	1	1	1	1

2014	H.L. Zhu#,	Photovoltai	N.A.	No	Yes	Yes
	W.C.H. Choy#,*, W.E.I. Sha,	c mode ultraviolet organic				
	X. Ren,	photodetect ors with high on/off				
		ratio and fast				
		response, Adv. Opt.				
2014	EV Vie	Mat., vol. 2, pp.1082-10	N.A.	No	V	Yes
2014	F.X. Xie, S.J. Cherng,		N.A.	NO	Yes	Tes
	S. Lu, Y.H. Chang,	of Self- assembled				
	W.E.I. Sha, S.P. Feng,	Ultrafine TiO2				
	C.M. Chen*,	Nanocrystal s for High				
	W.C.H. Choy*	Efficient Dye-Sensiti zed SCs",				
		ACS Appl. Mat. &				
		Interfaces, vol. 6, pp.				
2014	W. C. H.	5367-5373 "Recent	N.A.	No	Yes	Yes
	Choy,* W. K. Chan,*	Advances in Transition				
	Y. Yuan	Metal Complexes				
		and Light Manageme				
		nt Engineering in Organic				
		Optoelectro nic				
2014		Devices",	N.A.	No	Yes	Yes
invited	W.C.H. Choy*	vol. 26, pp.5368-53				
	Ĵ	99 The Emerging				
		Multiple Metal				
		Nanostructu res for				
		Enhancing the Light Trapping of				
		Thin Film Organic				
		Photovoltai cs, Chem.				
		Comm., DOI:				
		10.1039/				

2014	W.C.H.	"Multi-phys	N.A	No	Yes	Yes
invited	Choy*,	ical				
	W.E.I. Sha,	Properties				
	X. Li, D.	of Plasmonic				
	Zhang	Organic				
	Zhung	Solar				
		Cells",				
		Progress In				
		Electromag				
		netics				
		Research,				
2014	X.H. Li,	vol. 146,	N.A.	No	Yes	Yes
	W.C. H.	pp. 25-46				
	Choy*, X.	Highly				
	Ren, D.	Intensified				
	Zhang, H.F.	Surface				
	Lu	Enhanced				
		Raman				
		Scattering				
		by Using Monolayer				
		Graphene				
		as the				
		Nanospacer				
		of Metal				
		Film- Metal				
		Nanoparticl				
		e Coupling				
		System,				
		Adv. Funct.				
		Mat., vol.				
2013	X. Ren,	24, pp.3114–31	N.A.	No	Yes	Yes
	W.E.I. Sha,	pp.3114–31 22				
	W.C.H.	22 Tuning				
	Choy*	optical				
	Choy	responses				
		of metallic				
		dipole				
		nanoantenn				
		a using				
		graphene,				
2013	E V Via	Ont	NI A	No	Yes	Yes
010	F.X. Xie,	Opt.	N.A.	No	105	100
	W.C.H.	Express,	IN.A.	INO	105	105
	W.C.H.	Express, vol. 21, pp.	IN.A.	INO	103	105
	W.C.H. Choy*,	Express, vol. 21, pp. 31824-3182	n.A.	INO	105	
	W.C.H. Choy*, W.E.I. Sha,	Express, vol. 21, pp. 31824-3182 9	N.A .	INO	105	105
	W.C.H. Choy*, W.E.I. Sha, D. Zhang,	Express, vol. 21, pp. 31824-3182 9 Enhanced	N.A .	INO	105	105
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang,	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge	N.A.	INO	103	105
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction	N.A.	INO	105	105
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic	N.A.	INO	103	100
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells	N.A.	INO	103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati	N.A.	INO	103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects	N.A.	INO	103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by Metal	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by Metal Nanoparticl	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by Metal Nanoparticl es, Energy	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by Metal Nanoparticl es, Energy Environ.	N.A.		103	
	W.C.H. Choy*, W.E.I. Sha, D. Zhang, S. Zhang, X. Li, C.W. Leung, J.	Express, vol. 21, pp. 31824-3182 9 Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulati on Effects Induced by Metal Nanoparticl es, Energy	N.A.		103	

2013	L. Chen, W.C.H.	Broadband absorption	N.A	No	Yes	Yes
	Choy*, W.E.I. Sha	enhanceme nt of organic				
		solar cells with interstitial lattice patterned metal				
2013	X.C. Li, W.C.H. Choy*, F.	nanoparticl es, Appl. Phys. Lett., vol. 102, 251112 (4pp)	N.A.	No	Yes	Yes
	Xie, S. Zhang and J. Hou,	Room-Tem perature Solution-Pr ocessed Molybdenu m Oxide as Hole				
		Transport Layer with Ag Nanoparticl es for Highly Efficient				
2013	X.H. Li, W.C.H. Choy*, X. Bon J. Yin	Inverted Organic Solar Cells, J. Mater. Chem. A, vol. 1, p.6614-662	N.A.	No	Yes	Yes
	Ren, J. Xin, P. Lin, D.C.W. Leung,	Polarization -independe nt efficiency enhanceme				
		nt of organic solar cells by using				
2013	P. Lin, W.C.H. Choy*, D. Zhang, F. Xie, J. Xin, C. W.	3-D plasmonic electrode", Appl. Phys. Lett., vol. 102,153304 Semitransp arent OSC	N.A.	No	Yes	Yes
	Leung,	with hybrid monolayer graphene/m etal grid as top electrodes", Appl. Phys.				
		Lett., vol. 102, p.113, 303				

2013	D. Zhang,	Plasmonic-	N.A	No	Yes	Yes
2013	W.C.H.	electrically	IN.A	INO	1 68	105
		Functionali				
	Choy*, F.	zed TiO2				
	Xie, W.E.I.	for High				
	Sha, X. Li,	Performanc				
	B. Ding, K.	e Organic				
	Zhang, F.	Solar				
	Huang, and	Cells",				
	Y. Cao	Adv. Funct.				
	1. 040	Mat., vol.				
2013	D Thong	23,	NL A	No	Yes	Yes
2013	D. Zhang,	pp.4255–42	IN.A.	INO	165	168
	F. Xie, P.	61				
	Lin, W.C.H.					
	Choy*	Composite				
		Modified				
		Single-Laye				
		r Graphene				
		as an Efficient				
		Transparent				
		Cathode for				
		Organic				
		Solar				
	L	Cells",				
2013	F. Xie,	ACS Nano,	N.A.	No	Yes	Yes
	W.C.H.	vol. 7,				
	Choy*, C.	pp.1740–17				
	Wang, X.	47				
	Li, S.	Low-tempe				
	Zhang, J.	rature				
	Hou	Solution-Pr				
	пои	ocessed				
		Hydrogen				
		Molybdenu				
		m and				
		Vanadium				
		Bronzes for				
		Efficient				
		Hole				
		Transport				
2013		Layer in Organic	N.A.	No	Yes	Yes
2015	VIII: W	Electronics,	IN.A.	INU	105	105
	X.H.Li, W.	Adv. Mat.,				
	C.	vol. 25,				
	H.Choy*,	pp.2051–20				
	H.F. Lu,	55				
	W.E.I. Sha,	Efficiency				
	and H. P.	Enhanceme				
	Ho.	nt of				
		Organic				
		Solar Cells				
		by Using				
		Shape				
		Dependent				
		Broadband				
		Plasmonic				
		Absorption				
		in Metallic				
		Nanoparticl				
		es", Adv.				
i I	1	Funct. Mat.,	1			
		vol.23, pp. 2728–2735				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

*** It is important to note that only those "invited" talk in conference are provided in the table below.***

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the	to this	Acknowledged the support of this Joint	
			year ending of the relevant progress report)		Research Scheme (Yes or No)	repository (Yes or No)
13-18 September, 2015,	Approaches to	International	N. A.	Yes	Yes	No
Aachen, Germany, invited	Optical Absorption and Carrier	Conference or Amorphous and Nanocrystalline Semiconductors (ICANS2015)				
	New concept	Photonics 2015	I N. A.	Yes	Yes	No
1-3 Jul., 2015, Kyoto, Japan, invited	systems for high performance	22nd Internationa Workshop or Active-Matrix Fla Panel Displays and Devices -TFT Technologies and FPD Materials (AM-FPD '15)		Yes	Yes	No

23-24 May.	New schemes	The 2nd conference	N. A.	Yes	Yes	No
Beijing, China, invited	of room-temperat ure solution-proce ssed carrier transport layers for high performance Organic/Inorga nic Solar Cells					
2015. Hangzhou, China, Invited	and concept of hybrid material	International Conference of Polymers for Advanced Technologies		Yes	Yes	No
14-19 June, 2015, Hong Kong, Invited	Comprehensiv e studies of new schemes for enhancing the carrier extraction and light	International Conference on Optical Probes of Conjugated Polymers and Organic Nanostructures (OP		Yes	Yes	No
5-8 January 2015, Hong Kong, invited	New Schemes for Enhancing the Optical Management and Carrier Transport Properties of Organic Optoelectronic Devices	Conference on Molecular Electronic Materials and Devices (MEMD2015)		Yes		No
Nov., 2014 Washingto n, DC, invited,	Breaking the Space Charge Limit in	Limits of Optical Energy Conversion		Yes	Yes	No

17 Sept.	Multiple Metal	Sustainability Saian	N A	Yes	Yes	No
		Sustainability-Scien	N. A.	res	res	NO
	· /	ce Summer				
-	Nanostructures					
Taiwan.		Organic Solar Cells.				
invited	Transport					
	Layers &					
	Transparent					
	Flexible					
	Electrodes for					
	High-Performa					
	nce Organic					
	Photovoltaics					
	A new					
	approach of					
	efficient					
	carrier					
	transport layer					
	for organic					
	optoelectronics					
8-10	A new	9th Asian	N. A.	Yes	Yes	No
		Conference on				
	efficient	Dye-sensitized and				
	carrier	Organic Solar Cells				
	transport layer	0				
	for organic	(_~~~~~~)				
	optoelectronics					
	•	the 34 th Progress in	N. A.	Yes	Yes	No
Aug., 2014		Electromagnetic				
	Organic Solar					
, China,		Symposium				
invited		(PIERS).				
tutorial						
	Plasmonic-elec	the 34th Progress in	N. A.	Yes	Yes	No
		Electromagnetic				
Guangzhou		Research				
		Symposium				
		(PIERS)				
	Efficient					
	Organic Solar					
	Cells					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation
Xuanhua Li	PhD	Sept 2010	Jan 2014
Di Zhang	PhD	Sept 2010	Jun 2014
Fengxian Xie	PhD	Jan 2010	Jun 2013
Luzhou Chen	PhD	Nov 2009	Oct 2013

(All thesis title pages submitted in mid-term report.)

11.Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Recognition:

- OSA Fellow for his extensive contribution in in optical nanostructures for plasmonic, photovoltaics and light emitting devices. 2016

- Top 1% of most-cited scientists in Thomson Reuter's Essential Science Indicators (ESI). 2016

- Top 1% of most-cited scientists in Thomson Reuter's Essential Science Indicators (ESI). 2015

- Top 1% of most-cited scientists in Thomson Reuter's Essential Science Indicators (ESI). 2014

Recognized as Prolific researcher on organic solar cells in the index (WFC in physical sciences) in *Nature Index* 2014 Hong Kong published by *Nature*.
2014

Patents:

W.C.H. Choy, F. Xie, C.D. Wang, "Solution-Processed Transition Metal Oxides", Patent Application Pending. PCT/CN2013/082830, 05 Sept, 2012.

W.C.H. Choy, H.F. Lu, "A simple approach for integration of silver nanowires and silver nanoparticles as conductive metal network", Patent Application Pending. 14/455,584. 2014.

W.C.H. Choy, F. Jiang, "A Simple Approach for Preparing Post-Treatment-Free Solution Processed Non-Stoichiometric NiOx Nanoparticles as Conductive Hole Transport Materials", Patent Application Pending. 14/883,131, 2015.

Book Chapter:

<u>W.C.H. Choy</u>, Chapter 7, "Solution-processed Metal Oxides and Hybrid Metal Oxides as Efficient Carrier Transport Layers of Organic Optoelectronic Devices" in Polymer Photovoltaics: Materials, Physics, and Device Engineering, (Royal Society of Chemistry, 2015), ISBN: 978-1-84973-987-0.