The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Construction and mechanism of supertough/superwetting nanocrystalline interface on flexible polymeric membranes for water/oil separation

	Hong Kong Team	Mainland Team
Name of Principal	Professor Tang Chuyang	Professor Liu Fu
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of Civil	Ningbo Institute of Material
Institution	Engineering, the University	Technology and
	of Hong Kong	Engineering,
		Chinese Academy of
		Sciences
Contact Information	Tel.: +852 28591976	Tel.: +86-574-86325963
	E-mail: tangc@hku.hk	E-mail: fu.liu@nimte.ac.cn
Co-investigator(s)	Dr. Wang Jianqiang *	Dr. Xiong Zhu
(with title and	Dr. Yang Zhe	Mr. Lin Haibo
institution)	(The University of Hong	Mr. Wu Ziyang
	Kong)	Mr. Chen Yongliang
		(Ningbo Institute of
		Material Technology and
		Engineering,
		Chinese Academy of
		Sciences)

2. Investigator(s) and Academic Department/Units Involved

Note: * Dr. Wang Jianqiang has left HKU, and he now works as an Associate Professor at Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences. He continues to involve in the project as a member of the mainland team.

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01/01/2017	N.A.	N.A.
Project Completion date	31/12/2020	N.A.	N.A.
Duration (in month)	48	N.A.	N.A.
Deadline for Submission of Completion Report	31/12/2021	N.A.	N.A.

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To develop strategies to control the micro- and nano-scale surface morphology of poly(vinylidene fluoride) (PVDF) microporous membranes;
 - 2. To realize the self-assembly of functional nanoparticles within the confinement pore structure of PVDF microporous membranes in order to impart supertough/superwetting performance to these membranes;
 - 3. To investigate the fundamental mechanisms and principles governing the polymer-nanoparticle interaction and their stability during long term oil/water separation.
- 5.2 Revised Objectives

Date of approval from the RGC: <u>N.A.</u>

Reasons for the change: N.A.

6. Research Outcome

Major findings and research outcome

- *Creation of high-permeance and superwetting membranes*. Electrospinning is found to be a highly effective method to obtain membranes with high porosity, large surface area, and excellent membrane permeance (Qing et al. 2017; Guo et al. 2021). By the careful choices of materials (e.g., hydrophobic materials such as PVDF (Qing et al. 2019) and polytetrafluoroethylene (Qing et al. 2017) or hydrophilic materials such as polyvinyl alcohol (PVA) (Qing et al. 2020a)), we obtained high-performance superwetting membranes that can be used for efficient oil/water separation.
- *Creation of surface morphology/roughness*. The oil/water separation and antifouling performance of the superwetting membranes can be further enhanced by the tailoring and control of membrane surface morphology. Several novel strategies have been developed during the project. For example, we discovered a new mechanism to create surface roughness on PVDF membranes via solvent-thermal induced roughening (STIR) method (Qing et al. 2018; Qing et al. 2019). The STIR method relies on the mismatched thermal expansion between a solvent-swelled polymer shell (larger thermal expansion) and the swelled core (smaller thermal expansion), resulting in controllable surface roughening effect (Qing et al. 2019). In another approach (Wang et al. 2021), a PVDF membrane with a dual-scale hyperporous structure is fabricated via dual-phase separation (vapor and nonsolvent). With the aid of additional in situ polymerization of poly(hydroxyethyl methylacrylate), the resultant membrane achieved a continuous "nonfouling" separation for oil/water emulsions via membrane demulsification.
- Membrane surface modification and growth of nanoparticles. Several effective • methods have been developed to grow nanoparticles on microporous membranes, such as SiO₂ nanoparticles, TiO₂ nanoparticles, and TiO₂ nanofins (Qing et al. 2020a; Li et al. 2019). These hydrophilic surface decorations significantly enhanced the hydrophilicity and superwetting ability of the modified membranes, which greatly enhances their separation efficiency (permeance and retention properties) and antifouling performance. For example, we developed a simple electrospinning/in-situ growth strategy to prepare superhydrophilic-underwater-superoleophobic SiO2@PVA nanofibrous membranes for gravity-driven separation of oil/water mixture. The abundant hydroxyl groups on PVA nanofibers enabled uniform and stable deposition of silica nanoparticles, thus simultaneously realizing high surface energy surface (due to hydrophilic nature of PVA and silica) and multi-scale roughness features. The SiO2@PVA membranes exhibited efficient separation for both free oil/water mixture and a variety of surfactant-stabilized oil-in-water emulsions in a gravity-driven filtration process.
- *Oil/water separation*. The novel membranes developed in this project were tested for oil-water separation. The experimental results validated their antifouling performance and durability. The tailored interactions between oil/water mixture, membrane materials, and nanoparticles resulted in stable membrane separation performance.

Potential for further development of the research and the proposed course of action (maximum half a page)

The current project has primarily focused on the development of microporous membranes and its applications for oil/water separation. The research consortium will further develop this porous membrane technology to suit for a wide range of applications:

- 1. Water purification. The research consortium will explore the use of membrane technology for efficient contaminant removal from water, through sieving, adsorption, catalysis, and their combinations. For example, our primary results show efficient capture of toxic chemicals such as halogenated acetic acids, perfluorinated surfactants, etc. by carefully designed nanofibrous membranes. An undergraduate final year project student has been engaged to further work on the topic.
- 2. Air filtration. We intend to adapt the nano-/micro-structural design of membranes for the fabrication of high-efficiency air filters. We plan to submit a new proposal to Innovation and Technology Commission for potential funding of this further development.
- 3. Biomedical applications. The HK team is currently discussing with the Mainland team on the potential applications of membrane technology to biomedical applications, such as the separation, purification, and/or enrichment of active pharmaceutical ingredients (e.g., for vaccine development). A joint proposal will be prepared for the further development of this research direction.

7. The Layman's Summary

(describe in layman's language the nature, significance and value of the research project, in no more than 200 words)

Polymeric microporous membranes have been widely applied for the separation of micro-emulsions. However, long term exposure to unfavorable stress and water chemistry conditions can lead to irreversible damages due to creeping of membrane materials, resulting in the loss of superwetting and separation performance. This project aims to develop a supertough and superwetting interface on flexible polymeric membranes and to apply the resulting membranes for efficient oil/water separation. A primary micro-/nano-porous interface was prepared through phase inversion and template method on a poly(vinylidene fluoride) (PVDF) microporous membrane. Superwetting properties was introduced to this interface via (1) the growth of secondary hierarchical structures and (2) assembly of nanoparticles. The integration of the primary structure and nanoparticles resulted in a supertough and superwetting interface with controllable thickness. The resulting membranes show high separation efficiency, excellent antifouling performance, good retention properties, and satisfactory long-term performance for oil-water separation. This project provides fundamental insights into the design and fabrication of durable superwetting membranes as well as mechanisms governing the performance of membrane-based oil/water separation.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicat	ions	Author(s)	Title and Journal/	Submitted	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Book	to RGC	to this	d the support	from the
publication	Acceptance (For paper accepted but not yet published)	Review	Preparation (optional)	authors belonging to the project teams and denote the correspondin g author with an asterisk*)	(with the volume, pages and other necessary publishing details specified)		(Yes or	of this Joint Research Scheme (Yes or No)	institutional repository (Yes or No)
2021				Wang, J. *; He, B.; Ding, Y.; Li, T.; Zhang, W.; Zhang, Y.; Liu, F. *; Tang, C. Y.	Beyond superwetting surfaces: dual-scale hyperporous membrane with rational wettability for "nonfouling" emulsion separation via coalescence demulsification. ACS Applied Materials & Interfaces 2021, 13, (3), 4731-4739.	No	Yes	Yes	Yes
2021				Guo, H.; Zhang, J.; Peng, L. E.; Li, X.; Chen, Y.; Yao, Z.; Fan, Y.; Shih, K.; Tang, C. Y. *	High-efficiency capture and recovery of anionic perfluoroalkyl	No	Yes	Yes	Yes

2020	 		T., .:	NT-	V-	V	V
2020		Qing, W.; Li,		No	Yes	Yes	Yes
(a)		X.; Wu, Y.;	growth for				
		Shao, S.;	superhydrophilic-				
		Guo, H.;	underwater				
		Yao, Z.;	superoleophobic				
		Chen, Y.;	Silica/PVA				
		Zhang, W.;	nanofibrous				
		Tang, C. Y.*	membrane for				
			gravity-driven				
			oil-in-water				
			emulsion				
			separation.				
			Journal of				
			Membrane				
			Science 2020,				
			612, 118476.				
2020		Qing, W.;	Omniphobic	No	Yes	Yes	Yes
(b)		Wu, Y.; Li,	PVDF	140	105	103	105
(0)		X.; Shi, X.;	nanofibrous				
			membrane for				
		Shao, S.; Mai V					
		Mei, Y.; Zhang W.	superior				
		Zhang, W.;	anti-wetting				
		Tang, C. Y.*	performance in				
			direct contact				
			membrane				
			distillation.				
			Journal of				
			Membrane				
			Science 2020,				
			608, 118226.				
2019		Qing, W.;	One-step tailoring	No	Yes	Yes	Yes
		Wang, J.;	surface roughness				
		Ma, X.; Yao,					
		Z.; Feng, Y.;	chemistry to				
		Shi, X.; Liu,	prepare				
		F. ; Wang, P.;	superhydrophobic				
		Tang, C. Y. *	polyvinylidene				
			fluoride (PVDF)				
			membranes for				
			enhanced				
			membrane				
			distillation				
			performances.				
			Journal of Colloid				
			and Interface				
			Science 2019,				
			553, 99-107.				
2019		Li, X.; Qing,	Omniphobic	No	Yes	Yes	Yes
		W. ; Wu, Y.;	nanofibrous				
		Shao, S.;	membrane with				
		Peng, L. E.;	pine-needle-like				
			hierarchical				
		Wang, P.;	nanostructures:				
		Liu, F.;	toward enhanced				
			performance for				
		1 ang, C. 1.*	*				
		1	membrane		1		
			distillation ACC				
			distillation. ACS				
			Applied Materials				
			Applied Materials & Interfaces				
			Applied Materials				

· · · · · · · · · · · · · · · · · · ·		1				1
2019		Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance . Journal of Membrane Science 2019 , 581, 105-113.	No	Yes	Yes	Yes
2019			No	Yes	Yes	Yes
2019	Lin, H. ; Han,	with Unparalleled Forward Osmosis	2018	No	Yes	Yes
2018	Qing, W.; Shi, X.; Zhang, W.; Wang, J.; Wu, Y.; Wang, P.; Tang, C. Y.*	Solvent-thermal induced roughening: A novel and versatile method to prepare superhydrophobic membranes. <i>Journal of</i> <i>Membrane</i> <i>Science</i> 2018, 564, 465-472.	2018	No	Yes	Yes
2018	S.; Lin, H.; Wang, J.;	Janus polyvinylidene fluoride membrane with extremely opposite wetting surfaces via one single-step unidirectional segregation strategy. ACS Applied Materials & Interfaces 2018 , 10, (29), 24947-24954.	2018	No	Yes (by the mainland team)	Yes

2017	Qing, W.;	Robust	2018	No	Yes	Yes
	Shi, X.;	superhydrophobic				
	Deng, Y.;	-superoleophilic				
	Zhang, W.;	polytetrafluoroeth				
	Wang, J.;	ylene nanofibrous				
	Tang, C. Y.*	membrane for				
		oil/water				
		separation.				
		Journal of				
		Membrane				
		Science 2017,				
		540, 354-361.				
2017	Guo, H.;	A one-step rapid	2018	No	Yes	Yes
	Yao, Z. ;	assembly of thin				
	Yang, Z.;	film coating using				
	Ma, X.;	green				
	Wang, J.;	coordination				
	Tang, C. Y.*	complexes for				
		enhanced removal				
		of trace organic				
		contaminants by				
		membranes.				
		Environmental				
		Science &				
		Technology 2017,				
		51, (21),				
		12638-12643.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (<i>indicate the</i> year ending of the relevant progress report)	Attached to this report (Yes or No)	this Joint	Accessible from the institutional repository (Yes or No)
05/2019/Pittsbu rgh	One-Step Tailoring Surface Roughness and Surface Energy to Prepared Superhydrophobic Polyvinylidene Fluoride (PVDF) Membranes for Enhanced Membrane Distillation Performances	North American Membrane Society 2019 Annual Meeting		Yes	Yes	No (It is an oral presentation. No publication is involved).
08/2018/Lexin gton		North American Membrane Society 2018 Annual Meeting	2018	No	Yes	No (It is an oral presentation. No publication is involved).

Name	Degree registered for	C	Date of thesis submission/ graduation
N.A.			

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

Patent

Qin Weihua, Shi Xiaonan, **Tang Chuyang**, Chinese Patent, ZL 201810045088.7, 提高 聚合物薄膜表面粗糙度的方法及由其製備的薄膜

Awards

(1) Tang Chuyang, Inaugural HKU Innovator Award, 2020.

(2) Guo Hao, MIT Technology Review's Innovator Under 35 for Asia Pacific, 2020.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	13	2 conference	N.A.	1	2 awards
arising directly		presentations			
from this research					
project [or					
conference]					