(please insert ref. above)

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title 3D Design Algorithms and Dexterous Robotic Sewing for Customized Garment Fabrication

	Hong Kong Team	Mainland Team
Name of Principal Investigator (<i>with title</i>)	Dr. PAN Jia	Prof. Zhang Xinyu
Post	Assistant professor	Associate professor
Unit / Department / Institution	Department of Computer Science, The University of Hong Kong	School of computer science & software engineering / East China Normal University
Contact Information	Dr. PAN Jia jpan@cs.hku.hk	Prof. Zhang Xinyu xyzhang@sei.ecnu.edu.cn
Co-investigator(s) (with title and institution)		

2. Investigator(s) and Academic Department/Units Involved

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	2017/1/1		
Project Completion date	2020/12/31		
Duration (in month)	48		
Deadline for Submission of Completion Report	2021/12/31		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. 2D Sewing pattern parsing and 3D sewing sequence generation;
 - 2. Physical realistic sewing simulation;

- 3. Deformable object manipulation using robotic arms;
- 4. 2D/3D automated sewing using general robotic arms and sewing devices.

5.2 Revised Objectives

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

- 1. The grant has been used to train 5 PhD candidates (Part C 10) working on this project. Three research assistants and one postdoc fellow were also hired.
- 2. We have built a robot prototype for manipulating clothes. The system is then further extended to handle general 3D deformable objects, such as 3D sponge. The potential application includes robotic surgery where the robot needs to manipulate/interact with the soft body. During the development of the robotic prototype, we have solved many challenges including the tracking and reconstruction of deformable cloth status using computer vision, automatic parameter tuning for cloth simulator to minimize the difference between simulated results and the real cloth motion, and the learning-based control for manipulating deformable clothes to desired states.
- 3. We have built specialized hardware useful for deformable cloth grasping and manipulation. In particular, we have designed one dexterous gripper for deformable object grasping and manipulation. We have designed a new tactile sensor based on magnetic principle to provide high quality sensing to the deformable object, e.g., the sensor can distinguish the difference between different cloth materials.
- 4. One USA patent is applied and filed for this prototype.
- 5. We have done research around the topic of cloth manipulation. We have published 13 journal papers and 3 conference papers, all in the top robotics journals (IEEE Robotics and Automation Letters, International Journal of Robotics Research) and conferences (ICRA and Humanoids). We have 3 journal papers that have been submitted (2 to IEEE Robotics and Automation letters and 1 to Science Robotics) and are currently in the minor revision step.

In particular:

- a) We have studied how to control and grasp general deformable object including clothes. The publication includes 4 journals (2018-B, 2019-C, 2019-E, 2021-A) and 1 conference paper (2018-E) summarized in part C.
- b) We have solved the self-occlusion challenge of the deformable object manipulation by providing a real-time simultaneous tracking and reconstruction algorithm for deformable objects (2018-C)
- c) We have studied how to accomplish real-time control of high-DOFs objects, which is important for cloth manipulation because it is a high-DOF object. We have published 2 journal papers, i.e. 2017-B, 2018-A in part C.
- d) We have studied how to use deep reinforcement learning to accomplish intelligent control. This is critical for cloth manipulation and sewing task because the cloth's dynamics is so complex that we need to learn from data how to control it. We also applied the results in mobile robots with the output of 6 journal papers (2017-A, 2019-A, 2019-B, 2020-A, 2020-B, 2020-C in part C) and 1 conference paper (2019-D in part C). We recently also successfully applied our developed techniques in cloth grasping and sewing (2019-C, 2021-D)
- e) We also studied how to let human help the robot to deal with the challenging cloth grasping and manipulation tasks. The output is 2 conference papers (2018-F, 2021-D).
- f) We also studied how to develop specific hardware for the cloth manipulation, including the special gripper and tactile sensor. The outputs are 3 journal papers (2019-D, 2021-B, and 2021-C).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Future plan:

Our next step is trying to apply our technique in real-world industrial tasks for garment manufacturing. We have built a close collaboration with Rokae Robotics, a leading robotics company in mainland China. One of Rokae's products is a robotic platform for cloth sewing, which has been deployed in some factories. However, their system needs tedious low-level programming, careful controller parameter tuning and long-time debug for fixing the temporal logic issues, and thus is far from being convenient and robust for the garment industry. We will work with Rokae to further refine and improve our work on learning-based deformable object manipulation to meet the challenges in real industry.

In addition, as part of the AIR-InnoHK team made up of researchers from HKU and Tohoku University (Japan), we are developing novel robotic techniques to revolutionize and automize the traditional manufacturing process of clothes. The Hong Kong PI of this RGC-NSFC joint project is leading one project about human-robot collaborative garment manufacturing in the 0.4 billion Innovation Hong Kong project. We will use this great opportunity to improve the technique developed in this RGC-NSFC joint project to the level of being applicable to industrial tasks.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

This project provides a novel solution for garment manufacturing where sophisticated robots are augmented by intelligent algorithms and compliant grippers to achieve highly diversified, small-lot and personalized garments fabrication with high efficiency and flexibility. In our prototype system, the robot has combined a wide variety of techniques, including computer vision, machine learning, advanced tactile sensing, dexterous gripper design, and robotic control, to accomplish flexible and accurate manipulation of clothes.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's

funding support by quoting the specific grant reference.)

The Latest Status of Publications		Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible		
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
P	(For paper			belonging to	(with the	vear ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the	, ,	Scheme	(Yes or No)
	not yet		(<u>1</u>)	teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publishing				
				asterisk*)	details				
					specified)				
2017-A				Pinxin Long,	"Deep-lear	2018	Yes	Yes	Yes
				Wenxi Liu,	ned				
				Jia Pan*	Collision				
					Avoidance				
					Policy for				
					Distributed				
					Multiagent				
					Navigation				
					", IEEE				
					Robotics				
					and				
					Automatio				
					n Letters.				
					656-663.				
					2(2), 2017				
2017-B				Yaiue Yang.	"Parallel	2018	Yes	Yes	Yes
-017 2				Yuanging	Dynamics				
				Wu. Jia Pan*	Computati				
					on Using				
					Prefix Sum				
					Operations				
					" IFFF				
					, ILLL Robotics				
					and				
					Automatio				
					n L attors				
					1206 1202				
					1290-1303,				
					[2(3), 2017]				

2018-A		Yajue Yang,	"Unified	2018	Yes	Yes	Yes
		Yuanqing	GPU-Paral				
		Wu, Jia Pan*	lelizable				
		,	Robot				
			Forward				
			Dynamics				
			Computati				
			on Using				
			Band				
			Sparsity"				
			Sparsity,				
			IEEE Debetiee				
			Robotics				
			and				
			Automatio				
			n Letters,				
			203-209,				
			3(1), 2018				
2018-B		Zhe Hu,	"Three	2018	Yes	Yes	Yes
		Peigen Sun,	Dimension				
		Jia Pan*	al				
			Deformabl				
			e Object				
			Manipulati				
			on Using				
			Fast Online				
			Gaussian				
			Process				
			Pagrossion				
			" IEEE				
			, IEEE				
			Robotics				
			and				
			Automatio				
			n Letters,				
			979-986,				
		 	3(2), 2018				
2018-C		Tao Han,	"Robust	2020	Yes	Yes	Yes
		Xuan Zhao,	shape				
		Peigen Sun,	estimation				
		and Jia Pan*	for 3d				
			deformable				
			object				
			Manipulati				
			on",				
			Communic				
			ations in				
			Informatio				
			n and				
			Systems				
			$18(2) \cdot 107$				
			10(2).107 - 124 2010				
1		1	1124.2018	1	1	1	

2019-A		Tingxiang	"Getting	2018	Yes	Yes	Yes
		Fan, Xinjing	Robots				
		Cheng, Jia	Unfrozen				
		Pan*, Pinxin	and Unlost				
		Long, Wenxi	in Dense				
		Liu. Ruigang	Pedestrian				
		Yang	Crowds"				
		Dinesh	IFFF				
		Manasha	ILLL Debeties				
		Manocha	Robotics				
			and				
			Automatio				
			n Letters,				
			1178-1185,				
			4(2), 2019				
2019-В		Zhe Hu, Jia	"Safe	2018	Yes	Yes	Yes
		Pan*.	Navigation				
		Tingxiang	with				
		Fan Ruigang	Human				
		Vona	Instruction				
		rang,	instruction				
		Dinesn	s in				
		Manocha	Complex				
			Scenes",				
			IEEE				
			Robotics				
			and				
			Automatio				
			n Letters				
			753-760				
			100, 100, 100, 100, 100, 100, 100, 100,				
2010 0		D' I'.	4(2), 2019	2010	V	V	X 7
2019-С		Biao Jia,	Cloth	2018	res	res	Yes
		Zherong Pan,	Manipulati				
		Zhe Hu, Jia	on Using				
		Pan, Dinesh	Random-F				
		Manocha	orest-Base				
			d Imitation				
			Learning".				
			IEEE				
			Robotics				
			and				
			Automatio				
			I Letters,				
			4(2):2086-				
			2093, 2019				
2019-D		Zhong	"Design of	2020	Yes	Yes	Yes
		Zhang, Tao	anthropom				
		Han, Jia	orphic				
		Pan*, and	fingers				
		Zheng Wang	with				
			hiomimetic				
			actuation				
			machania				
			" IEEE				
			. IEEE				
			Robotics				
			and				
			Automatio				
			n Letters,				
			4(4):3465-				
			3472, 2019				

2019-Е	Zhe Hu , Tao	"3D	2020	Yes	Yes	Yes
	Han, Peigen	deformable				
	Sun , Jia	object				
	Pan*, and	manipulati				
	Dinesh	on using				
	Manocha	deep neural				
		networks."				
		IEEE				
		Robotics				
		and				
		Automatio				
		n L etters				
		$A(A) \cdot A255_{-}$				
		4261				
		2019				
2020 4	Tinviona	"Distributo	2020	Vas	Vac	Vac
2020-A	Fon Dinvin	d	2020	105	105	res
	Long Worki	u multi rohot				
	Long, went					
	Liu, and Jia	collision				
	Pan*	avoidance				
		via deep				
		reinforcem				
		ent				
		learning				
		for				
		navigation				
		in complex				
		scenarios."				
		Internation				
		al Journal				
		on				
		Robotics				
		Research,				
		39(7):856-				
		892, 2020.				
2020-В	Zhiming	Autonomo	2020	Yes	Yes	Yes
	Chen,	us social				
	Tingxiang	distancing				
	Fan, Xuan	in urban				
	Zhao, Jing	environme				
	Liang, Cong	nts using a				
	Shen, Hua	quadruped				
	Chen, Dinesh	robot.				
	Manocha.	IEEE				
	Jia Pan*, and	Access.				
	Wei Zhang*	2020				

	1			1	1			1
2020-С			Tingxiang Fan and Pinxin Long	"Learning resilient behaviors	2020	Yes	Yes	Yes
			and Wenxi	for				
			Pan* and	under				
			Ruigang	uncertainty				
			Yang and	environme				
			Dinesh	nts", In				
			Manocha	IEEE				
				Internation				
				al Conference				
				on				
				Robotics				
				and				
				Automatio				
				n (ICRA),				
				5299-5305,				
				2020.				
2021-A		2021, in	Hu Zhe, Yu	"Living	2021	Yes	Yes (in the	Not yet
		minor	∠neng [*] , J1a Don*	Object			Inal	
		revision	Pan*	Grasping			vorsion	
				Two-Stage			version)	
				Graph				
				Reinforce				
				ment				
				Learning",				
				Submitted				
				to IEEE				
				Robotics				
				Automatio				
				n Letters				
2021-B		2021 in	Youcan Yan.	"Fast	2021	Yes	Yes (in the	Not vet
		minor	Jia Pan*	Localizatio			final	j = .
		revision		n and			accepted	
				Segmentati			version)	
				on of				
				Tissue				
				Adnormant				
				Autonomo				
				us Robotic				
				Palpation",				
				Submitted				
				to IEEE				
				Robotics				
				and				
				Automatio				
	2021-C		Youcan Yan	"A soft	2021	Yes	Yes	Not vet
	2021-0		Zhe Hu.	magnetic		105		
			Zhengbao	skin for				
			Yang,	self-decou				
			Wenzhen	pled and				
			Yuan,	super-resol				
			Chaoyang	ved tactile				
			Song, Jia	sensing",				
			rall", Vajing Shan*	to Science				
			r ajing bilen'	Robotics				
L								

2021-D	2021, in	Xuan Zhao,	"An	2021	Yes	Yes (in the	Not yet
	submiss	Tingxiang	Efficient			final	5
	ion	Fan, Yanwen	and			accepted	
	1011	Li, Yu	Responsive			version)	
		Zheng, Jia	Robot				
		Pan*	Motion				
			Controller				
			for				
			SafeHuma				
			n-Robot				
			Collaborati				
			on",				
			submitted				
			to IEEE				
			Robotics				
			and				
			Automatio				
			n Letters				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research Scheme (Yes or No)	Accessible from the institutional repository (Yes or No)
May/2018/Bri	Towards	IEEE International	2018	Yes	Yes	May/2018/Brisb
sbane	Optimally	Conference on Robotics				ane
2018-D	Decentralized	and Automation				
	Multi-robot					
	Collision					
	Avoidance via					
	Deep					
	Reinforcement					
	Learning					
May/2018/Bri	Manipulating	IEEE International	2018	Yes	Yes	May/2018/Brisb
sbane	Highly	Conference on Robotics				ane
2018-Е	Deformable	and Automation				
	Materials Using a					
	Visual Feedback					
	Dictionary					
Nov. 6-9,	Collaborative	IEEE International	2018	Yes	Yes	Nov. 6-9, 2018,
2018, Beijing	Human-Robot	Conference on				Beijing
2018-F	Motion	Humanoid Robots				
	Generation using					
	LSTM-RNN					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation

Zhe HU	PhD.	2017/9	2021/9
Yajue YANG	PhD.	2018/1	2022/1
Zhong ZHANG	PhD.	2017/9	2021/9
Tingxiang Fan	PhD.	2018/11	2022/11
Dawei Wang	PhD.	2018/9	2022/9

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

USA Patent:

1. Jia Pan, Zhe Hu, System and Method for Manipulating Deformable Objects, 6 Feb 2018, Filed, Priority No. 15889,490, USA patent

Collaboration with other research institutes:

- 1. Collaborating with the Fuzhou University on computer vision techniques for deformable object
- 2. Collaborating with the Guangdong university of technology on human-robot collaboration and industrial robots
- 3. Collaborating with Rokae Robotics Inc. on cloth manufacturing system development
- 4. Collaborating with the robotics institute at SUSTECH (Southern University of Science and Technology) general robotic manufacturing research

Other Grants:

As a part of the AIR-InnoHK team made up of researchers from HKU and Tohoku University (Japan), we are developing novel robotic techniques to revolutionize and automize the traditional manufacturing process of clothes. The Hong Kong PI of this RGC-NSFC joint project is leading one project about human-robot collaborative garment manufacturing in the 0.4 billion Innovation Hong Kong project. Our goal is to improve the technique developed in this RGC-NSFC joint project to the level of being applicable to industrial tasks.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Door reviewed	Conformed	Scholarly books	Potonte awardad	Other research
	reel-levieweu	Conference	Scholarry books,	r atents awalueu	Ouler research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	13 (plus 1	3	0	1	Collaboration
arising directly	accepted and 3				with Fuzhou
from this research	in submission)				University,
project [or					Guangdong
conference]					university of
					technology,
					Rokae
					Robotics, and
					Southern
					University of
					Science and
					Technology;
					Contribute to the
					successful
					application of
					Innovation Hong
					Kong Project.