RGC Ref.: N_CityU123/15 NSFC Ref. : (please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Synthesis and Optoelectronic Properties of the White Graphene 白石墨烯的制備與光電效應的研究

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal Investigator (<i>with title</i>)	Prof ZHI Chunyi	Prof ZENG Haibo
Post	Professor	Professor
Unit / Department / Institution	Department of Materials Science and Engineering, City University	Nanjing University of Science and Technology
Contact Information	chunyzhi@cityu.edu.hk	ZengHaibo@noemail.com
Co-investigator(s) (with title and institution)		

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	01-Jan-2016	Nil.	Nil.
Project Completion date	31-Dec-2019	Nil.	Nil.
Duration (in month)	48	Nil.	Nil.
Deadline for Submission of Completion Report	31-Dec-2020	Nil.	Nil.

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
- 1. To synthesize mono-dispersed white graphene (few-atomic layered boron nitride nanosheets) and white graphene quantum dots (few-atomic layered boron nitride nanosheets with nano-sized lateral sizes). Emphasis will be also placed on thickness and size control, as well as surface chemical modification of synthesized white graphene and its quantum dots.
- 2. To thoroughly investigate microstructures, optical properties and electronic structures of fabricated white graphene and white graphene quantum dots. Emphasis will be also placed on theoretical investigations on electronic structures.

- 3. To explore deep ultraviolet applications of the fabricated white graphene and white graphene quantum dots. Emphasis will be placed on deep ultraviolet detector and light emission devices (by Collaboration).
- 5.2 Revised Objectives

Date of approval from the	RGC:
Reasons for the change:	

1. 2. 3.

6. Research Outcome

Major findings and research outcome

(maximum 1 page; please make reference to Part C where necessary)

Growth dynamics. This project systematically studied the growth thermodynamics of white graphene and developed an industrially compatible atmospheric pressure chemical vapor deposition growth method for large-area high-quality white graphene. This project systematically studied the effects of growth conditions such as growth temperature, reaction time, growth location, and gas flow on the white graphene product thickness, single crystal domain area, continuous film area, coverage and other parameters, and clarified the corresponding dependencies. we prepared ultra-small BN/BCNO quantum dots (QDs) with uniform sizes through a hydrothermal method by cutting white graphene provided by mainland partner and BCNO assisted by bases. The BN/BCNO QDs are water-soluble with uniform lateral size around 3.3 and 4.0 nm The paper was published on 2D Materials 2016, 3, 035007 ; RSC Advances, 2016, 6, 79090.

Optoelectronic properties. The photoluminescence excitation (PLE) spectra of BN/BCNO QDs both show main peaks at 320nm and weak peaks at 290 nm which is correlated with absorption spectra. Normalized PL spectra of both BN/BCNO QDs show an excitation-dependent effect, which means the PL spectra shift with varied excitation energies. We also developed the amino and silane surface functionalization technology of white graphene in response to the long-standing agglomeration problem in the field that is extremely unfavorable to the preparation of composite materials. Effectively inhibit the agglomeration in solvents and sols, greatly improve the dispersibility of dopants, and successfully develop a white graphene composite silicate gel glass with controllable content and uniform dispersion, with a content of 0.5 wt. % While still maintaining uniformity and transparency. Optical studies have shown that white graphene glass has a high light transmittance in the entire visible and near-infrared bands. For example, when the content is 0.01%, it has a light transmittance of up to 90% in the wide band of 300-1400 nm. It has excellent optical limiting effects in the wider band of 532-1570 nm, such as : 0.50% doped white graphene glass has a minimum limiting threshold of only 9 mJ/cm² for 1570 nm laser. The paper was published on 2D Materials 2018, 5, 035036.

Device. We developed the "graphene-white graphene-graphene" ultra-thin flexible capacitor. Through electrical studies, it is found that the vertical resistance of white graphene has a very good linear dependence on the number of atomic layers. The current density decreases from 40 pA/cm² to 0.8 pA/cm² as the number of layers increases. This linear resistance effect has laid a good foundation for the precise quantification of ultra-thin capacitors. The cooperative team in this project added boron nitride nanosheets with high thermal conductivity to the double-hinge polymerized polyacrylic hydrogel. This composite material exhibits excellent flexibility, self-healing and high thermal conductivity. The thermal conductivity increases nearly 10 times after compounding, reaching 3.5 W/(m·K). We also developed several flexible detectors based on two-dimensional materials, and explored optical and electrical enhancement strategies to achieve a significant improvement in optical detection performance. The detector has an optical opening ratio of up to 104, and the light response rise and fall times are 19µs and 25µs, respectively. The flexible device can be continuously bent. The current fluctuation is less than 3% after 10,000 times being, which is of great significance for flexible and wearable photodetectors. The paper was published on ACS Appl. Mater. Interfaces 2017, 9, 1007810084; Angew. Chem. 2017, 129, 5316.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Boron nitride has a large forbidden bandwidth and has special application prospects in photoelectric devices such as deep ultraviolet solar-blind detectors, the weakness of poor conductivity greatly limits practical applications. Two-dimensional electronic material system such as white graphene with higher conductivity and photoelectronic application prospects should be further studied. Materials with similar structure but more tunable electronic structure should be explored for constructing devices with better performance. The electronic structure characteristics of the two-dimensional heterojunction formed by white graphene and its isoelectronic body will be studied. White graphene and its isoelectronic two-dimensional superlattice may have the characteristics of adjustable semiconductor energy band, wide spectral response range, and adjustable conductivity, which can make up for the shortcomings of pure white graphene. This can extend applications of white graphene in the field of optoelectronics.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

The project aims to jointly develop the preparation method of 2D boron nitride white graphene and study its photoelectric effect. During the execution of this project, the planned research content was completed, and research progress was made in the growth thermodynamics of white graphene, optical and electrical properties, and device application exploration: (1) The growth thermodynamics of white graphene was systematically studied. We developed the atmospheric pressure chemical vapor deposition growth method of few layers of white graphene with a single crystal domain of 30 microns and a continuous film of 4 cm; (2), We found that white graphene has nonlinear optical limiting and blue luminescence characteristics. The white graphene composite glass was developed; (3), The quantum capacitance effect of ultra-thin white graphene was discovered. We also developed white graphene ultra-thin capacitors for wearable circuits and self-healing circuit heat dissipation materials with a thermal conductivity of 3.5 W/($m \cdot K$). In addition, a high-performance flexible two-dimensional photodetector prototype device with enhanced charge collection and enhanced light trapping was fabricated; (4) The design of white graphene and its isoelectronic two-dimensional superlattice reveals the characteristics of semiconductor band gap and adjustable mobility, and points out the development direction.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC		d the support	
publication	Acceptance	Review		authors	Book	(indicate the			institutional
puolication	(For paper	100000	reputation	belonging to	(with the	year ending		Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet		(opnonar)	teams and	pages and	relevant		(Yes or No)	()
	published)			denote the	other	progress		(105 07 110)	
	p no noncu)			corresponding		report)			
				author with an		(P or t)			
				asterisk*)	details				
				,	specified)				
2016				Song	A	2018	Yes	Yes	Yes
				Xiufeng ; Li					
				Qiguang ; Ji	comprehen				
				Jianping;	sive				
				Yan Zhong;	investigati				
				Gu Yu; Huo	on on CVD				
				Chengxue; Zou	growth				
				Yousheng;	thermokine				
				Zhi Chunyi;	tics of				
				Zeng	white				
				Haibo*	graphene				
					white				
					graphene,				
					2D				
					Materials				
					3, 035007				
					(2016)				
2016				Zifeng	Fabrication	2018	Yes	Yes	Yes
				Wang, Zijie					
				Tang, Qi	of Boron				
				Xue, Yan	Nitride				
				Huang,	Nanosheets				
				Yang					
				Huang,	by				
				Minshen	Exfoliation				
				Zhu,	, The				
				Zengxia Pei,	Chemical				
				Hongfei Li,	Record 16,				
				Hongbo					
				Jiang,	1204				
				Chenxi Fu,	(2016)				
				and Chunyi	l í				
				Zhi*					
				Z/III [·]					

2018	Zhou Wenhan ; Liu Xuhai; Hu Xuemin; Zhang Shengli ; Zhi Chunyi; Cai Bo; Guo Shiying; Song Xiufeng; Li Zhi; Zeng			Yes	Yes	Yes
2017	Jiang Hongbo ; Wang Zifeng ; Geng Huiyuan; Song Xiufeng; Zeng Haibo*; Zhi Chunyi*	(2018) Highly Flexible and Self-Heala ble Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-Link ed Hydrogel ACS Applied Materials Interfaces, 9, 10078 (2017)	2018	Yes	Yes	Yes

2016	Vuo Oi -		2018	Yes	Yes	Yes
2010	Xue Qi ; Zhang	ingarotiter	2018	res	1 es	i es
	Huijie; Zhu	mal				
	Minshen;	synthesis				
	Wang	of				
	Zifeng; Pei	blue-fluore				
	Zengxia;	scent				
	Huang Yang;	monolayer				
	Huang Yan; Song	BN and				
	Xiufeng;	BCNO				
	Zeng					
	Haibo*; Zhi	quantum				
	Chunyi*	dots for				
		bio-imagin				
		g probes				
		, RSC				
		Advances 6, 79090				
		6, 79090 (2016)				
2019	Jiang	Three-dim		Yes	Yes	Yes
	Hongbo; Ma	ensional				
	Longtao;	porous				
	Yang Qi;	boron				
	Tang Zijie;	nitride				
	Song	foam for				
	Xiufeng; Zeng Haibo;	effective				
	Zhi Chunyi*					
	Zin Chunyi	, Solid				
		State				
		Communic				
		ations 294,				
		1 (2019)				
2019	Jiang	Boron ink		Yes	Yes	Yes
	Hongbo;	assisted in				
	Wang	situ boron				
		nitride				
	Longtao;	coatings for				
	Yang Qi; Tang Zijie;	anti-oxidati				
	Song	on and				
	Xiufeng;	anti-corrosi				
	Zeng Haibo;	on				
	Zhi Chunyi*					
		s,				
		Nanotechn				
		ology 30,				
		335704				
		(2019)				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	to this report	this Joint	Accessible from the institutional repository (Yes or No)
U	BN nanosheet composite for electronic devices	21st International Conference on Composite Materials (ICCM-21)	No	No conferenc e paper.	Yes	No conference paper.
^	Applications of 2D materials	2rd Novel Materials Synthesis and Application Symposium	No	No conferenc e paper.	Yes	No conference paper.
ingdao,	2D materials: synthesis and applications	中國材料大會	No	No conferenc e paper.	Yes	No conference paper.

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for		Date of thesis submission/
			graduation
XUE Qi	PhD	2014	2017
WANG Zifeng	PhD	2015	2018

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

Currently, there is no industrial transformation of the project results. The white graphene composite optical glass and white graphene composite thermal conductive materials have good application prospects in laser windows and flexible circuit heat dissipation materials, which are expected to be realized through further engineering research.

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

NSFC/RGC 8 (Revised 01/18)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	6	0	0	2	Nil.
arising directly					
from this research					
project [or					
conference]					