(please insert ref. above)

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Fluorescent Organic Compound–Phosphorescent Inorganic Transition Metal Complex Conjugates as Bioprobes and Imaging Reagents 受光有機化合物和磷光無機過渡金屬配合物的結合物作為生物探針和成像試劑

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Kenneth Kam-wing LO	Prof. Cong YU
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Department of Chemistry, City	Changchun Institute of
Institution	University of Hong Kong	Applied Chemistry, Chinese
		Academy of Sciences
Contact Information	E-mail: bhkenlo@cityu.edu.hk	E-mail: congyu@ciac.ac.cn
	Tel: (852) 3442 7231	Tel: (86) 431-85262710
Co-investigator(s)	-	-
(with title and		
institution)		

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval (must be quoted)
Project Start date	01-Jan-2016	-	01-Jan-2016
Project Completion date	31-Dec-2019	-	31-Dec-2019
Duration (in month)	48	-	48
Deadline for Submission of Completion Report	31-Dec-2020	-	31-Dec-2020

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To design, synthesize, and characterize conjugates of fluorescent perylene and phosphorescent transition metal complexes as new molecular probes.
 - 2. To study the interactions of perylene and transition metal complexes within the conjugates to enhance their applicability as fluorescent or phosphorescent molecular probes.
 - 3. To examine the biomolecule-binding properties of the conjugates and develop sensitive, selective, and efficient bioassays.

NSFC/RGC 8 (Revised 01/18)

- 4. To investigate the cellular uptake, intracellular distribution, and bioimaging applications of the conjugates.
- 5.2 Revised Objectives

Date of approval from the RGC: <u>N.A.</u>

Reasons for the change: N.A.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

Luminescent rhenium(I) polypyridine complexes containing a benzo[ghi]perylene unit $[Re(N^N)(CO)_3(py-BP)](CF_3SO_3)$ (py-BP = pyridine-benzo[ghi]perylene; N^N = biq (1), Ph₂-phen (2), Me₄-phen (3)) and a pervlenediimide moiety through a disulfide linker [Re(Ph₂-phen)(CO)₃(py-SS-PDI-TEG)](CF₃SO₃) (4) were synthesized and characterized. Upon photoexcitation, the complexes exhibited short-lived greenish-yellow fluorescence. Complex 4 was found to exhibit FRET from the rhenium(I) polypyridine to the perylene moiety, resulting in very weak emission from the inorganic unit and predominant fluorescence from the perylene moiety. The emission spectra of complex 4 showed substantial changes in the presence of glutathione (GSH), attributed to the disulfide cleavage of complex 4. Specifically, the luminescence of the rhenium(I) polypyridine unit was recovered whereas the fluorescence of the perylene moiety disappeared due to π - π stacking. Live HeLa cells treated with the complex exhibited emission in the cytoplasm, and the intensity was substantially higher when the cells were treated with GSH, indicating that the complex can serve as an intracellular sensor for GSH. Related iridium(III) polypyridine complexes appended with a perylenediimide (PDI) unit through tri(ethylene)glycol (TEG) linker [$Ir(N^{C})_{2}(bpy-TEG-PDI-OEG)$](PF₆) (HN^C = Hdfppy (1a), Hppy (2a), Hpqe (3a)) were isolated. Upon excitation, the PDI complexes showed intense PDI-based fluorescence, whereas the phosphorescence of the iridium(III) polypyridines was quenched by the PDI unit via FRET. Although the PDI complexes displayed lower cellular uptake efficiencies than their PDI-free counterparts due to aggregation, the phosphorescence of complex 3a in aqueous media allowed it to serve as a bioimaging reagent. Importantly, excitation resulted in a very long-lived ³PDI excited state (54.7 – 61.8 μ s), endowing the complexes with strong ¹O₂-photosensitizing ability and excellent photocytotoxic activity.

The interesting results generated from this work have been extended to other systems composed of various inorganic materials/complexes and organic components with rich photophysical and photochemical properties. For inorganic materials, the fluorescence turn-on detection of alkaline phosphatase (ALP) was realized by using poly(ethyleneimine)-capped copper nanoclusters as the fluorescent unit and MnO₂ nanosheets as fluorescence quencher. A

sensitive detection method for choline based on the *in situ* polymerization of aniline on the surface of upconverting nanoparticles was also developed. Additionally, an efficient method for the synthesis of silver nanoclusters capped silica nanoparticles (SiO₂@AgNCs) was established for the development of ratiometric luminescent nanosensor for I^- and S^{2-} ions. For inorganic metal complexes, photoactivatable iridium(III) PEG complexes with a nitrobenzyl group were designed; the nitrobenzyl unit allowed the complexes to be photoactivated, leading to the release of the PEG or TEG pendant and hence a significant increase in the cytotoxic activity, rendering the complexes to exhibit oxygen-independent photocytotoxicity. Ruthenium(II) *N*-methyl nitrone complexes were also developed; these complexes displayed phosphorogenic responses toward strained alkynes such as BCN-OH. Through structural modification, the complexes achieved specific cell membrane or cytosol staining in live cells. Iridium(III) complexes containing a chlorotetrazine pendant were synthesized; these complexes were non-emissive due to effective FRET and PET from the excited iridium(III) unit to the organic tetrazine moiety. However, they exhibited significant emission enhancement upon reacting with BCN-OH (ca. 19.5 to 121.9 fold) and the conjugate BCN-BSA (ca. 140.8 to 1133.7 fold). Monochromophoric tetrazine probes composed of an iridium(III) center with a built-in tetrazine derivative were established; the phosphorogenic properties of the complexes allowed them to be used to label BCN-BSA with an emission enhancement factor up to 1372 fold. In another study, iridium(III) complexes containing an organic 2,4-dinitrophenyl ether moiety were designed; these complexes were non-emissive due to the efficient quenching effect of the dinitroaromatic moiety. However, upon the reaction with GSH or H₂S, the emission was turned on due to the departure of the quenching unit. Iridium(III) complexes appended with a phenylboronic acid unit were also synthesized; the sialic acid-binding, cellular uptake, cytotoxicity, and bioimaging capability of the complexes were investigated. Two ruthenium(II) fructose complexes were designed; one of the complexes displayed intense membrane staining toward MCF-7 cells but was localized in the mitochondria of HeLa cells. Furthermore, iridium(III) and rhenium(I) complexes containing an organic sydnone moiety were synthesized; these complexes displayed significant emission enhancement upon reaction with strained alkyne derivatives, and were utilized to label cyclooctyne-modified proteins and ceramide or morpholine in live cells.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

We have demonstrated in this collaborative project that the modification of phosphorescent transition metal complexes with a fluorescent organic moiety allows the production of novel conjugate that exhibit interesting photophysical and photochemical These new behavior can be exploited in the development of new bioassays. properties. luminescent sensors of small molecules, bioimaging agents for molecular markers and organelles in live cells, and controllable photocytotoxic agents. The most important finding is that the properties of the conjugates are not simply addition of those of the two individual components because in all the cases, emission quenching due to FRET and PET can occur, aggregation behavior of the inorganic and organic units can also be finely controlled. On the basis of these interesting results, we believe that this project Since we have demonstrated that the photophysical, can be further developed. photochemical, cellular uptake, intracellular localization, and (photo)cytotoxic properties of inorganic and organometallic transition metal complexes and organic aromatics can be strategically enriched through structural modifications, we believe that the use of other phosphorescent transition metal complexes, fluorescent organic units, and various spacer arms with or without π -conjugation will lead to the development of highly sensitive bioassays, imaging reagents, and photocytotoxic agents.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

In this project, new conjugates composed of phosphorescent transition metal complexes and fluorescent pervlene and related organic derivatives have been designed, synthesized, and characterized. The photophysical, photochemical, and biological properties of the conjugates have also been investigated. Despite the fact that transition metal pervlene complexes had previously been reported, the utilization of these complexes in bioanalytical sensing had not been examined. Additionally, their potential as imaging reagents for live cells had not been explored. Thus, we have targeted to investigate whether the coupling of transition metal complexes of different nature would affect the aggregation behavior of pervlene derivatives; whether the photophysical properties of the metal complexes and pervlene would be affected after conjugation; and whether the cellular uptake and cytotoxicity of the two units would be changed. We have demonstrated that the environment-sensitive phosphorescence of transition metal complexes and the aggregation-dependent fluorescence of pervlene can enable the inorganic/organic hybrids to display interesting quenching characteristic that is absent in the metal complex and organic fluorophore alone, which can be exploited for biological sensing and organelle-targeting in bioimaging applications. The interesting results generated from this project will expand the bioanalytical toolbox and contribute to the development of new diagnostic and therapeutic reagents.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publicat	ions	Author(s)	Title and Journal/ Book	Submitted to	Attached to	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the authors	(with the volume, pages and other	RGC	this report	d the support	from the
publication	Acceptance	Review	Preparation	belonging to the	necessary publishing details specified)	(indicate the	(Yes or No)	of this Joint	institutional
	(For paper			project teams and		year ending		Research	repository
	accepted but		(optional)	denote the		of the		Scheme	(Yes or No)
	not yet			corresponding		relevant		(Yes or No)	
	published)			author with an		progress			
2017				asterisk [•])		1epon)	N.T.	37	X7
2017				Zhang, Y.;	Fluorescence Turn-on	2017	No	Yes	Yes
				Li, Y.;	Detection of Alkaline				
				Zhang, C.;	Phosphatase Activity Based				
				Zhang, Q.;	on Controlled Release of				
				Huang, X.;	PEI-capped Cu Nanoclusters				
				Yang, M.;	from MnO ₂ Nanosheets.				
				Shahzad, S.	Analytical and Bioanalytical				
				A.; Lo, K.	Chemistry 2017, 409, 4771 –				
				KW.;*	4778.				
				Yu, C.;*					
				Jiang, S.*					

2017		Huang, X.; Shahzad, S. A.; Li, Y.; Zhang, Y.; Zhou, H.; Jiang, H.; Lo, K. KW.;* Yu, C.*	Silver nanoclusters capped silica nanoparticles as a ratiometric photoluminescence nanosensor for the selective detection of I ⁻ and S ²⁻ . <i>Analytica Chimica Acta</i> 2017 , <i>988</i> , 74 – 80.	2017	No	Yes	Yes
2017		Li, Y.; Yin, S.; Lu, Y.; Zhou, H.; Jiang, H.; Niu, N.; Huang, H.; Zhang, L.; Lo, K. KW.;* Yu, C.*	Choline Sensing Based on In Situ Polymerization of Aniline on the Surface of Upconverting Nanoparticles. Journal of Materials Chemistry B 2017 , 5, 7861 – 7865.	2017	No	Yes	Yes
2016		Tso, K. KS.; Leung, KK.; Liu, HW.; Lo, K. KW. *	Photoactivatable Cytotoxic Agents Derived from Mitochondria- targeting Luminescent Iridium(III) Poly(ethylene glycol) Complexes Modified with a Nitrobenzyl Linkage. <i>Chemical Communications</i> 2016 , <i>52</i> , 4557 – 4560.	2017	No	Yes	Yes
2016		Tang, T. SM., Liu, HW.; Lo, K. KW. *	Structural Manipulation of Ruthenium(II) Polypyridine Nitrone Complexes to Generate Phosphorogenic Bioorthogonal Reagents for Selective Cellular Labeling. <i>Chemistry – A European</i> <i>Journal</i> 2016 , <i>22</i> , 9649 – 9659.	2017	No	Yes	Yes
2016		Li, S. PY.; Yip, A. MH.; Liu, HW.; Lo, K. KW.*	Installing an Additional Emission Quenching Pathway in the Design of Iridium(III)-based Phosphorogenic Biomaterials for Bioorthogonal Labeling and Imaging. <i>Biomaterials</i> 2016 , <i>103</i> , 305 – 313.	2017	No	Yes	Yes
2017		Tang, T. SM., Liu, HW.; Lo, K. KW. *	Monochromophoric Iridium(III) Pyridyl-tetrazine Complexes as a Unique Design Strategy for Bioorthogonal Probes with Luminogenic Behavior. <i>Chemical Communications</i> 2017 , <i>53</i> , 3299 – 3302.	2017	No	Yes	Yes
2017		Liu, HW.; Law, W. HT.; Lee, L. CC.; Lau, J. CW.; Lo, K. KW.*	Cyclometalated Iridium(III) Bipyridine-Phenylboronic Acid Complexes as Luminescent Probes for Sialic Acids and Bioimaging Reagents. <i>Chemistry – An Asian</i> <i>Journal</i> 2017 , <i>12</i> , 1545 – 1556.	2017	No	Yes	Yes

2017		Tso K	Phosphorogenic Sensors for	2017	No	Ves	Ves
2017		$150, \mathbf{K}$.	Phosphologenic Sensors for	2017	INO	168	165
		KS.; L1u,	Biotiniois Derived from				
		HW.; Lo,	Cyclometalated Iridium(III)				
		K. KW.*	Polypyridine Complexes				
			Containing a Dinitrophenyl				
			Ether Moiety.				
			Journal of Inorganic				
			Biochemistry 2017 177				
			2017, 177, 112, 122				
2017		I C	412 - 422.	2017	NT	\$7	X 7
2017		Lau, C.	Photophysical, Cellular	2017	NO	Yes	Yes
		TS.; Chan,	Uptake, and Bioimaging				
		C.; Zhang,	Studies of Luminescent				
		K. Y.; Roy,	Ruthenium(II) Polypyridine				
		V. A. L.;	Complexes Containing a				
		Lo. K.	D-Fructose Pendant.				
		K -W *	European Journal of				
		12	Laropean Sournal of				
			<i>Enorganic Chemistry</i> 201 7,				
			5288 - 5294.		1		
2017		Lee, L.	Recent Development of	2017	No	Yes	Yes
		CC.;	Luminescent Rhenium(I)				
		Leung,	Tricarbonyl Polypyridine				
		KK.; Lo.	Complexes as Cellular				
		кк.w*	Imaging Reagents				
			Anticancer Drugs and				
			Antibactorial A ganta				
			Antibacterial Agents.				
			Dalton Transactions 2017,				
			46, 16357 – 16380.				
2018		Yip, A.	Luminescent Rhenium(I),	No	Yes	Yes	Yes
		МН.; Lo,	Ruthenium(II), and				
		K. KW.*	Iridium(III) Polypyridine				
			Complexes Containing a				
			Poly(ethylene glycol)				
			Dendent or Disorthe gonal				
			Reaction Group as Biological				
			Probes and Photocytotoxic				
			Agents.				
			Coordination Chemistry				
			Reviews 2018. 361. 138 –				
			163				
2018		Lee I	Exploitation of	No	Ves	Ves	Ves
2010		C, C	Exploration of	140	105	103	105
		$C_{-}C_{-}$					
		Cheung, H.	Luminophores in the Design				
		MH.; Liu,	of Novel Sydnone-based				
		HW.; Lo,	Bioorthogonal Imaging				
		K. KW.*	Reagents.				
			Chemistry – A European				
			Iournal 2018 24 14064 -				
			1/068				
2010	+ +	 Vin A	I uminascent Dhenium(I)	No	Vac	Vac	Vac
2019		ттр, А. М. Ц	Data with Cont	INU	105	105	105
		мн.;	Polypyridine Complexes				
		Shum, J.;	Appended with a Perylene				
		Liu, HW.;	Diimide or Benzoperylene				
		Zhou, H.:	Monoimide Moiety:				
		Jia. M · Niu	Photophysics, Intracellular				
		$N \cdot I i V \cdot$	Sensing and Photocytotoxic				
		Vn C·*	A otivity				
		1 U, C.;*	Activity.				
		L0, K.	Cnemistry – A European				
		KW.*	Journal 2019 , 25, 8970 –				
			8974				

2019			Shum, J.;	Luminescent Ruthenium(II)	No	Yes	Yes	Yes
			Leung, P.	Polypyridine Complexes for				
			КК.; Lo,	a Wide Variety of				
			K. KW.*	Biomolecular and Cellular				
				Applications.				
				Inorganic Chemistry 2019,				
				58, 2231 – 2247				
2019			Li, S. PY.;	Iridium(III) Polypyridine	No	Yes	Yes	Yes
			Yim, V.	Complexes with a Disulfide				
			MW.;	Linker as Biological Sensors				
			Shum, J.;	and Cytotoxic Agents.				
			Lo, K.	Dalton Transactions 2019,				
			KW.*	48,9692 - 9702				
2019			Zhu, JH.;	Luminescent Molecular	No	Yes	Yes	Yes
			Tang. B.	Octopuses with a Polyhedral				
			Z.;* Lo, K.	Oligomeric Silsesquioxane				
			KW.*	Core and Iridium(III)				
				Polypyridine Arms:				
				Synthesis, Aggregation				
				Induced Emission. Cellular				
				Uptake and Bioimaging				
				Studies.				
				Chemistry – A European				
				Journal 2019 , 25, 10633 –				
				10641				
2020			Lo K	Molecular Design of	No	Yes	Yes	Yes
_0_0			KW.*	Bioorthogonal Probes and	110	105	105	100
				Imaging Reagents Derived				
				from Photofunctional				
				Transition Metal Complexes				
				Accounts of Chemical				
				Research 2020 53 $32 - 44$				
2020			Shum I.	Bioorthogonal	No	Ves	Ves	Ves
2020			Zhang	Phosphorogenic Rhenium(I)	110	103	103	103
			$\mathbf{P}_{-7} \cdot \mathbf{I}_{-9}$	Polypyridine Sydnone				
			$I : Z_{\cdot}, Lee,$ I : C - C :	Complexes for Specific				
			L. C. C., Lo K	L vsosome L abeling				
			L0, K. K -W *	ChemPlusChem 2020 in				
			12 **.	press				
		2020	Tso K	Cyclometalated Iridium(III)	No	Ves	Ves	No
		2020	$K_{-S} \cdot L_{in}$	Complexes Appended with a	110	1 05	1 05	110
			H_{-W}	Pervlene Dijmide Unit as				
			7hou H .	Efficient Singlet				
			$\frac{Z_{110}u, \Pi_{1.}}{I_{12}}$	Ovygen Photosonsitizars and				
			$\mathbf{N} \cdot \mathbf{I} : \mathbf{V}$	Photosytotoxic A conto				
			$\mathbf{N}_{\mathbf{N}}, \mathbf{L}_{\mathbf{I}}, \mathbf{I}_{\mathbf{I}}, \mathbf{N}_{\mathbf{N}}$	(Under properties)				
			1 u, C.;*	(Under preparation)				
1	1 1	1	IK _ VV *	1	1	1	1	1

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/Place	Title	Conference	Submitted	Attached to	Acknowledged	Accessible
		Name	to RGC	this report	the support of	from the
			(indicate the	(Yes or No)	this Joint	institutiona
			year ending		Research	1 repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			

Jul/2016/	Luminescent	The 42 nd	2017	No	No	No
Brest	Rhenium(I),	International				
	Ruthenium(II), and	Conference on				
	Iridium(III)	Coordination				
	Complexes as	Chemistry				
	Intracellular	(ICCC-42)				
	Sensors, Cytotoxic	`````				
	Agents, and					
	Bioorthogonal					
	Probes					
Oct/2016/	Utilization of	The 13 th	2017	No	No	No
Shanghai	Rhenium(I).	Conference on	2017	110	110	110
SumBun	Ruthenium(II) and	Bioinorganic				
	Iridium(III)	Chemistry in				
	Complexes as	China				
	Intracellular					
	Sensors Cytotoxic					
	Agents and					
	Bioorthogonal					
	Probes					
Dec/2016/	Development of	The 9th Asian	2017	No	Ves	No
Singapore	Photofunctional	Photochemistry	2017	110	105	110
Singapore	Rhenium(I)	Conference				
	Ruthenium(II) and	(APC)				
	Iridium(III)	Singapore				
	Complexes as	Singapore				
	Intracellular					
	Sensors Cytotoxic					
	Agents and					
	Ricorthogonal					
	Probes					
Dec/2016/	Intracellular	The 8th Asian	2017	No	No	No
Auckland	Sensors Cytotoxic	Biological	2017	110	110	140
Auckland	Agents and	Inorganic				
	Rioorthogonal	Chemistry				
	Probes Derived	Conference				
	from Photoactive	$(\Delta s RIC 8)$				
	Rhenium(I)	(ASDICO)				
	Ruthenium(II) and					
	Iridium(III)					
	Polynyridine					
	Complexes					
Jul/2017/	Photoactivatable	The 22nd	2017	No	No	No
Oxford	Cytotoxic Agents	International	2017	110	110	140
UNION CALOR	and Bioorthogonal	Symposium on				
	Probes Derived	the				
	from Rhenium(I)	Photophysics				
	Ruthenium(II) and	and				
	Iridium(III)	Photochemistry				
	Complexes	of Coordination				
	Complexes	Compounds				
		(ISPPCC)				

Jul/2017/	Luminescent	Fluorescence	2017	No	No	No
Melbourne	Rhenium(I).	Symposium of				
	Ruthenium(II), and	the Royal				
	Iridium(III)	Australian				
	Complexes as	Chemical				
	Novel Cellular	Institute (RACI)				
	Reagents	National				
	Reagents	Centenary				
		Conference				
Ju1/2017/	Photofunctional	The 6th Asian	2017	No	No	No
Melbourne	Transition Metal	Conference on	2017	110	110	110
Wielbourne	Complexes as	Coordination				
	Intracellular	Chemistry				
	Sensors and	$(ACCC_{-6})$				
	Bioorthogonal	(necc-0)				
	Probes					
Ju1/2018/	Photofunctional	The 43rd	No	Ves	No	No
Sendai	Transition Metal	International	110	105	110	110
Bendur	Complexes as	Conference on				
	Intracellular	Coordination				
	Sensors Cytotoxic	Chemistry				
	Agents and	(ICCC 2018)				
	Rioorthogonal	(1000 2010)				
	Probes					
Aug/2018/	Photofunctional	The 14th	No	Yes	No	No
Birmingham	Rhenium(I)	European	110	105	110	110
Diningham	Ruthenium(II) and	Biological				
	Iridium(III)	Inorganic				
	Complexes as New	Chemistry				
	Bioorthogonal	Conference				
	Probes. Imaging	(EuroBIC 14)				
	Regents, and	(
	Photocytotoxic					
	Agents					
Dec/2018/	Biomolecular	The 9th Asian	No	Yes	No	No
Singapore	Probes and Cellular	Biological				
01	Reagents Derived	Inorganic				
	from Luminescent	Chemistry				
	Rhenium(I),	Conference				
	Ruthenium(II), and	(AsBIC9)				
	Iridium(III)					
	Complexes					
Dec/2018/	Exploitation of	The 10th Asian	No	Yes	No	No
Taipei	Luminescent	Photochemistry				
	Transition Metal	Conference				
	Polypyridine	(APC)				
	Complexes as					
	Bioorthogonal					
	Probes, Cellular					
	Imaging Reagents,					
	and Photocytotoxic					
	Agents					

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Steve Po-Yam Li	PhD	1 Sep 2012	Sep 2016 (thesis title page attached)
Tommy Siu-Ming Tang	PhD	1 Sep 2012	Mar 2017 (thesis title page attached)
Karson Ka-Shun Tso	PhD	1 Sep 2013	Nov 2018 (thesis title page attached)
Lawrence Cho-Cheung Lee	PhD	1 Sep 2014	31 Aug 2020
Kam-Keung Leung	PhD	1 Sep 2015	31 Aug 2020
Alex Man-Hei Yip	PhD	1 Sep 2016	31 Aug 2020
Jing-Hui Zhu	PhD	1 Sep 2017	31 Aug 2020
Justin Shum	PhD	1 Sep 2019	31 Aug 2023

- **11. Other impact** (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)
- A patent application entitled "Luminogenic Transition Metal-Based Pyridyl Complex and its Use" has been submitted. US Patent Application No. 15/359,736, filed on 23 Nov 2016. Lo, Kenneth Kam-Wing; Liu, Hua-Wei; Lee, Cho-Cheung; Tang, Siu-Ming.
- 2. The Hong Kong PI has been elected to be a Vice Chair and Chair at the Gordon Research Conference Metals in Medicine 2016 and 2018, respectively.
- 3. The publication entitled "Monochromophoric Iridium(III) Pyridyl-tetrazine Complexes as a Unique Design Strategy for Bioorthogonal Probes with Luminogenic Behavior" (*Chem. Commun.* 2017, *53*, 3299 3302) was highlighted as a cover of issue 23 of the journal.
- 4. The publication entitled "Cyclometalated Iridium(III) Bipyridine–Phenylboronic Acid Complexes as Bioimaging Reagents and Luminescent Probes for Sialic Acids" (*Chem. Asian J.* 2017, *12*, 1545 1556) was an invited article for inclusion in the special issue "Celebrating the 100th Anniversary of the Founding of the Royal Australian Chemical Institute (RACI)".
- 5. The publication entitled "Phosphorogenic sensors for biothiols derived from cyclometalated iridium(III) polypyridine complexes containing a dinitrophenyl ether moiety" (*J. Inorg. Biochem.* 2017, 177, 412 422) was an invited article for inclusion in the proceedings of the 8th Asian Biological Inorganic Chemistry Conference (AsBIC8).
- 6. The publication entitled "Photophysical, Cellular Uptake, and Bioimaging Studies of Luminescent Ruthenium(II) Polypyridine Complexes Containing a D-Fructose Pendant" (*Eur. J. Inorg. Chem.* 2017, 5288 5294) was an invited article for

inclusion in the Cluster Issue entitled "Luminescent Materials Encompassing Metal Complexes, Clusters and Nanomaterials" of the journal.

- 7. The publication entitled "Recent Development of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Cellular Imaging Reagents, Anticancer Drugs, and Antibacterial Agents" (*Dalton Trans.* **2017**, *46*, 16357 16380) was an invited article and published as a Perspective.
- 8. The publication entitled "Luminescent Rhenium(I), Ruthenium(II), and Iridium(III) Polypyridine Complexes Containing a Poly(ethylene glycol) Pendant or Bioorthogonal Reaction Group as Biological Probes and Photocytotoxic Agents" (*Coord. Chem. Rev.* **2018**, *361*, 138 163) was an invited article included in the Special Issue for the 22nd International Symposium on the Photophysics and Photochemistry of Coordination Compounds (ISPPCC), Oxford, UK (9 14 July 2017).
- The publication entitled "Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications" (*Inorg. Chem.* 2019, 58, 2231 – 2247) was an invited article published as a Viewpoint article.
- The publication entitled "Iridium(III) Polypyridine Complexes with a Disulfide Linker as Biological Sensors and Cytotoxic Agents" (*Dalton Trans.* 2019, 48, 9692 – 9702) was an invited article published under the theme "Diagnostics and Medical Applications" of the themed issue "d-Block Chemistry".
- The publication entitled "Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes." (Acc. Chem. Res. 2020, 53, 32 – 44) was an invited article published included in the Special Issue entitled "Activity-Based Sensing".
- 12. The publication entitled "Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling" (*ChemPlusChem* **2020**, in press) was an invited article published included in the Special Collection: entitled "Fluorescent Biomolecules and their Building Blocks".