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Part B:  The Completion Report 

5. Project Objectives

5.1  Objectives as per original application 

1. Devise fast and robust sparse recovery solutions. We will robustify two

conventional approaches, which correspond to solving convex

unconstrained/constrained optimization problems, via introducing possibly

non-convex sparsity-inducing and noise-resistant functions in the problem

formulation. In particular, the non-convex -norm function with 

will be exploited in the algorithm development. 

2. Extend the algorithm development to handle complex-valued observations

and produce the distributed and/or parallel implementations of the derived

solvers.

3. Produce the theoretical analysis for the developed sparse recovery algorithms.

Important performance measures including computational complexity, local

and global convergence as well as conditions of exact recovery, will be

examined.
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4. Apply the devised non-convex based methodology to important problems

including spectral estimation, source localization, image denoising,

magnetic resonance imaging and social network analysis, and compare with

the corresponding start-of-the-art techniques in terms of recovery

performance, convergence, robustness and computational complexity.

5.2 Revised Objectives 

Nil. 
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6. Research Outcome

Major findings and research outcome 
    (maximum 1 page; please make reference to Part C where necessary) 

We have addressed the problem of robust sparse recovery by exploring the behavior of 

non-convex and non-smooth sparseness measure by designing and verifying two novel 

algorithms [J4, J3]. In [J4], we consider that the optimization cost function is a linear 

combination of a non-smooth sparsity-inducing term and an -norm as the metric for 

the residual error. To handle the nondifferentiable cost functions, locally competitive 

algorithm and forward Euler discretization method are exploited to approximate the 

non-smoothness. Alternating Direction Method of Multipliers (ADMM) is then applied 

as the solver of the resultant smooth optimization problem, and Nesterov acceleration is 

integrated for speeding up the computation process. In [J3], we turn to the robust sparse 

recovery by specializing the non-smooth sparseness measure as a class of weakly convex 

functions and replacing the metric for fidelity from -norm to -norm. A slack variable 

is introduced to guarantee the convexity of the equivalent optimization problem in each 

block of variables and an efficient algorithm is derived for minimizing the surrogate 

Lagrangian based on the ADMM. The use of weakly convex sparseness measure 

guarantees that this novel robust sparse recovery formulation attains the global optimum 

solution. Compared with several state-of-the-art algorithms, our new methods obtain 

better recovery performance particularly in the presence of impulsive noise. 

We have focused on the theoretical analysis for -norm and weakly convex function as 

both sparseness penalty and robust fidelity measures [J2, J5, J7]. In [J2], we start 

investigating the sparse recovery conditions and performance bounds for 

-minimization. Based on our devised Null Space Constant (NSC) upper bound, which 

outperforms the state-of-the-art result, we provide a new Restricted Isometry Constant 

(RIC) upper bound dependent on the sparsity level as a sufficient condition for precise 

recovery, and it is tighter than the existing bound for small sparsity level. Then we study 

the largest choice of  for the -minimization problem to recover any -sparse signal, 

and the largest recoverable  for a fixed . In [J5], we directly analyze the 

performance bound of a general optimization problem for robust sparse signal recovery, 

including many existing works as concrete instances, by a freshly defined Double NSC 

(DNSC), and its solution is proved to be able to robustly reconstruct the sparse signal 

under mild conditions. Moreover, for computational tractability, weakly convex 

sparsity-inducing penalties are applied to the general problem, and properties of the 

solution to the resultant non-convex problem are further studied. Based on these 

properties, an algorithm named Robust Projected Generalized Gradient (RPGG) is 
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devised to solve the weakly convex problem. Theoretical results prove that the sparse 

signal can be precisely reconstructed by RPGG from compressive measurements with 

sparse noise or robustly recovered from those with impulsive noise. In [J7], we combine 

the provable behavior of weakly convex sparseness measure and the efficient operation 

of deep neural networks in designing a network named Learning Proximal Operator 

Method (LePOM) for sparse recovery. Theoretical analysis of this network inspires us to 

further reduce the number of parameters and arrive at proposing the Analytical LePOM 

(ALePOM). ALePOM determines most parameters by solving an optimization problem 

and significantly reduces the number of parameters. It is proved that if the signal is 

sufficiently sparse, ALePOM converges linearly. Simulations confirm our analyses and 

demonstrate that the proposed methods outperform state-of-the-art sparse recovery 

algorithms and neural network-based methods. Based on deep learning, recently we have 

also developed a proximal gradient algorithm for fast sparse matrix recovery and its 

superiority over several conventional schemes is demonstrated [S1]. 

Furthermore, we have applied our developed methodologies in improving the solution for 

the problem of direction-of-arrival (DOA) estimation [J6, J1]. In [J6], we introduce 

weakly convex sparseness measure in robust DOA estimation via low-rank matrix 

approximation. Compared with several existing algorithms, the proposed methods enjoy 

smaller computational complexity, comparable DOA estimation performance against 

impulsive noise and requiring no a priori information of the source number. While in 

[J1], we develop a novel objective function regularized by the nonconvex 

sparsity-inducing penalty for off-grid DOA estimation and utilize alternating 

minimization to tackle this joint sparse representation of the signal recovery and 

perturbation matrix. Numerical simulations verify the effectiveness of the proposed 

method, which achieves more accurate DOA estimation performance and faster 

implementation than the conventional sparsity-aware and state-of-the-art off-grid 

schemes. 

Potential for further development of the research and the proposed course of action 
(maximum half a page) 

Recently, the roaring success of deep learning contributes to the advancement of sparse 

signal recovery. Many conducted works have been focusing on neural networks based on 

unfolding iterative algorithms. We recognize that greedy pursuit algorithms usually require 

abundant samples to guarantee the recovery. The state-of-the-art global optimization 

algorithms for sparse recovery are usually computationally inefficient. In contrast, the 

methods based on the neural network unfolding technique have higher computational 

efficiency. However, to the best of our knowledge, the research in learning-based robust 

sparse recovery is still rare or lacks applicability due to the tough choices of 

hyper-parameters. Along this direction, there are a lot of concrete works need to be done 

including algorithm development and theoretical analysis. 

7. The Layman’s Summary
(describe in layman’s language the nature, significance and value of the research project, in

no more than 200 words)
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Sparse recovery refers to extracting a high-dimensional vector with few nonzero entries 

from a small number of linear measurements. It has been a core topic in science and 

engineering because many real-world signals have a sparse representation in some basis. 

As an intensive field of research, there are still obstacles need to be overcome to further 

enhance its practicality. One key issue is to solve large-scale problems in big data 

analytics where the number of variables is enormous, implying the need of 

computationally attractive solutions. Another challenge is to recover the sparse signals 

from as few observations as possible. A representative example is in magnetic resonance 

imaging where significant scan time reduction means benefits for patients and health care 

economics. Furthermore, many existing sparse recovery algorithms assume that the 

measurement noise is Gaussian distributed. However, the occurrence of non-Gaussian 

impulsive noise is common, and thus these standard solvers might be unable to provide 

reliable performance in such scenarios. In this research, we utilize non-convex 

sparsity-inducing and noise-resistant functions in devising efficient, robust, and provable 

algorithms to recover sparse signals in non-Gaussian noise environment with minimum 

observations. We expect that our research results can provide a significant value in sparse 

recovery. 

Part C:  Research Output 

8. Peer-reviewed journal publication(s) arising directly from this research project
(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted

in the previous progress report(s).  All listed publications must acknowledge RGC’s

funding support by quoting the specific grant reference.)

The Latest Status of Publications Author(s) 
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authors 
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the project 

teams and 

denote the 

corresponding 

author with an 

asterisk*) 

Title and Journal/ Book  

(with the volume, pages and 

other necessary publishing 

details specified) 

Submitte

d to RGC 

(indicate 

the year 

ending of 

the 

relevant 

progress 

report) 

Attached 

to this 

report 

(Yes or 

No) 

Acknowle

dged the 

support of 

this Joint 

Research 

Scheme 

(Yes or 

No) 

Accessibl

e from the 

institution

al 

repository 

(Yes or 

No) 

Year of 

publication 

Year of 

Acceptance 

(For paper 

accepted 

but not yet 

published) 

Under 

Review 

Under 

Preparati

on 

(optional

) 

2017 

[J1] 

Q.Liu*, 

H.C.So, 

Y.Gu 

Off-grid DOA 

estimation with 

nonconvex 

regularization via joint 

sparse representation, 

Signal Processing, 

vol.140, pp.171-176, 

Nov. 2017 

2017 Yes Yes Yes 

2018 

[J2] 

C.Yang, X. 

Shen, 
H.Ma, 

Y.Gu*, 

H.C.So 

Sparse recovery 

conditions and 

performance bounds 

for -minimization, 

IEEE Transactions on 

Signal Processing, 

vol.66, pp.5014-5028, 

Oct. 2018 

Yes Yes Yes 
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2018 

[J3] 

Q.Liu*, 

C.Yang, 

Y.Gu, 

H.C.So 

Robust sparse recovery 

via weakly convex 

optimization in 

impulsive noise, Signal 

Processing, vol.152, 

pp.84-89, Nov. 2018 

Yes Yes Yes 

2019 

[J4] 

Q.Liu, 

Y.Gu, 

H.C.So* 

Smoothed sparse 

recovery via locally 

competitive algorithm 

and forward Euler 

discretization method, 

Signal Processing, 

vol.157, pp.97-102, 

Apr. 2019 

Yes Yes Yes 

2019 

[J5] 

C.Yang, 

X.Shen, 

H.Ma, 

B.Chen, 

Y.Gu, 

H.C.So* 

Weakly convex 

regularized robust 

sparse recovery 

methods with 

theoretical guarantees, 

IEEE Transactions on 

Signal Processing, 

vol.67, no.13, 

pp.5046-5061, Oct. 

2019 

Yes Yes Yes 

2019 

[J6] 

Q.Liu, 

Y.Gu, 

H.C.So* 

DOA estimation in 

impulsive noise via 

low-rank matrix 

approximation and 

weakly convex 

optimization, IEEE 

Transactions on 

Aerospace and 

Electronic Systems, 

vol.55, no.6, 

pp.3603-3616, Dec. 

2019 

Yes Yes Yes 

[J7] 2020 C.Yang, 

Y.Gu*, 

B.Chen, 

H.Ma, 

H.C.So 

Learning proximal 

operators for sparse 

recovery with 

theoretical guarantee, 

IEEE Transactions on 

Signal Processing, 

accepted 

Yes Yes No 

[S1] 2020 C.Yang, 

Y.Gu*, 

B.Chen, 

H.Ma, 

H.C.So 

2D learned proximal 

gradient algorithm for 

fast sparse matrix 

recovery, submitted to 

IEEE Transactions on 

Circuits and Systems 

II: Express Briefs 

Yes Yes No 

9. Recognized international conference(s) in which paper(s) related to this research
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papers must acknowledge RGC’s funding support by quoting the specific grant reference.)
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11. Other impact (e.g. award of patents or prizes, collaboration with other research

institutions, technology transfer, etc.)

During this research, we have the opportunity to collaborate with Prof. Badong Chen 

at Xi’an Jiaotong University. Inspired by the -norm idea, a patent on robust matrix 

factorization has been granted, namely, W.-J. Zeng, H.C. So and J. Chen, “Systems 

and methods for robust low-rank matrix approximation,” U.S. Patent No. 10,229,092, 

2019 




