The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report____

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

A Micro Array Chip based Single Cell Manipulation System for Characterization of Electrical Stimulation Induced Stem Cell Differentiation

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. SUN Dong	Prof. ZHU Rong
Investigator (with title)		
Post	Chair Professor	Professor
Unit / Department /	City University of Hong	Tsinghua University
Institution	Kong	
Contact Information	bmehead@cityu.edu.hk	ZhuRong@noemail.com
Co-investigator(s)	Prof. LI Gang, The Chinese	Prof. LIU Peng, Tsinghua
(with title and	University of Hong Kong	University
institution)		

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01/01/2016		
Project Completion date	31/12/2019		
Duration (in month)	48		
Deadline for Submission of Completion Report	31/12/2020		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. Develop a single cell manipulation system that enables generation of electrical stimulus to direct stem cell differentiation by using technologies of micro array chip and robotically controlled optical tweezers, allowing groups of cells to be positioned accurately in the electrode for simultaneous processing.
 - 2. Investigate and develop optimal protocols for the stem cell osteogenic differentiation in the micro array chip developed, and quantitatively analyze the electrical stimulation induced differentiation of mesenchymal stem cells (MSCs).

- 3. Characterize mechanobiological and physiological electrical properties of MSCs such as cytoskeleton vicissitude during cell stimulation and differentiation and specific markers for the mature Osteoblast, and perform *in vivo* testing of the osteogenic potentials of cells.
- 5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change:	
U	

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

We have performed this project study in the following three aspects to achieve the project objectives.

1. Development a single cell manipulation system

We reported the development of a novel microfluidic platform that can individually array and culture hundreds of cells under chemical and electrical stimuli in *Biomicrofluidics* (2017). The size of the microchamber can be adjusted to fit different cell culture times, and this characteristic enables remarkable scalability. Transparent indium tin oxide microelectrodes were integrated with the single-cell array platform for on-chip electrical stimuli. The platform exhibited nearly 90% single-cell efficiency and facilitated week-scale clonal expansion of different types of single cells. By tracking clonal expansion of cells under chemical/electrical stimuli for relatively long periods, the proposed platform can facilitate the screening of the cell subpopulation with a favorable growth phenotype for drug testing and cell therapy. We also reported a new type of DEP-enabled 3D scaffold for active cell seeding and patterning in *Biomedical Microdevices* (2017). The proposed scaffold design can enable formation of multiple ring patterns via DEP and the properties of the scaffold are suitable for bone tissue culture. We have further developed a simplified sheathless cell separation technology by using combined gravitational sedimentation based prefocusing and dielectrophoretic separation technologies in *Lab on a Chip* (2019).

2. Investigation and development of optimal protocols for stem cell osteogenic differentiation

Osteogenic differentiation MSCs, especially through the electrical stimulation (ES), plays an important role in bone healing. Direct (DC) and alternating (AC) currents are used clinically to stimulate osteogenic differentiation; however, information on conducting effective differentiation for clinical treatment remains lacking. We developed a method to optimize ES parameters based on the calcium spike patterns of MSCs. Calcium spike frequency decreases as the MSC osteogenic differentiation progresses. Using the optimal parameters of AC, including voltage, wave, frequency and duty time, we efficiently initiated the process of osteogenic differentiation in MSCs. This method provides a new aspect for

optimizing osteogenic differentiation; moreover, it has potential uses in clinical treatments, such as in bone fractures. This work was reported in the *IEEE Transactions on Nanobioscience* (2019). In addition, we have investigated a novel ES based microelectrode array chip to enhance osteogenic differentiation of MSCs, and reported this work in *Lab on a Chip* (2020).

3. Characterization of mechanobiological and physiological electrical properties of MSCs

As reported in our paper in Lab on a Chip (2020), when using the microelectrode unit array on the microchip to generate an inhomogeneous electric field to stimulate MSCs, osteogenic differentiation with nodular structures and tissue formation could be more effectively enhanced. The osteogenic differentiation was assaved by using alizarin red staining and morphology observation as well as immunocytochemistry, which provided in situ differentiation assessment on a chip with ES and without ES. According to the results, the osteogenic differentiation of MSCs was enhanced by in-plant stimulation with an array-distributed inhomogeneous electric field, and especially for the combination of induced conditions with osteogenic medium (ES + OM), the differentiation efficiency was remarkably increased. The microelectrode-array-chip-based electrical stimulation method can also be applied onto differentiation of MSCs as a fundamental platform which can be further integrated with in situ cell assay approaches for the applications in MSCs assay and bone tissue therapies. In our another paper published in *Biomicrofluidics* (2018), given the stimulation of the periodic mechanical confinement on-chip, the migration ability of cells was promoted, and moreover, the migration speed increased as the stimulation was enhanced. Both AFM nanoindentation and optical stretching tests on cells were performed to measure their mechanical property.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The future development includes the optimization of protocols for stem cell osteogenic differentiation, and characterization of mechanobiological and physiological electrical properties of MSCs with possible in vivo testing results of the osteogenic potentials.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Electrical stimulation is a physical induction method that can induce the proliferation and differentiation of stem cells with less damage. Currently, due to the lack of effective methods for measuring accurate information during differentiation, the actual differentiation efficiency under electrical stimulation is quite low. The project aims to solve this problem by developing a new micro array chip based single cell manipulation system to induce the proliferation and differentiation of MSCs. This research was conducted from three aspects: the development of a single cell manipulation system, the study of optimal protocols for stem cell osteogenic differentiation, and the characterization of the mechanical biology and physiological electrical characteristics of MSCs. This research broadens our understanding of how to manipulate stem cells at the single-cell level and induce ideal electrical stimulation conditions for stem cell differentiation, thereby helping us develop new treatment options for tissue repair and regeneration.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status of	of Publicat	tions	Author(s)	Title and	Submitted	Attached	Acknowle	Accessib
Year of	Year of	Under	Under	(bold the	Journal/Book	to RGC	to this	dged the	le from
	Acceptance	Review	Preparation		(with the volume,	(indicate	report		the
publication	(For paper		reparation	belonging to the	pages and other	the year	(Yes or	this Joint	institutio
	accepted		(optional)	project teams	necessary	ending of	No)	Research	nal
			(opnonai)	<u>and</u> denote the	publishing details	the relevant		Scheme	repositor
	but not yet			corresponding	specified)	progress		(Yes or	у
	published)			author with an		report)		No)	(Yes or
				asterisk*)					No)
2017				T. Luo, J. Hou,	"Microfluidic	Yes	Yes	Yes	Yes
				S. Chen, Y. T.	single-cell array				
				Chow, R.	platform enabling				
				Wang, D. Ma,	week-scale clonal				
				R. Zhu , and D.	expansion under				
				Sun*	chemical/electrical stimuli,"				
					Biomicrofluidics,				
					vol. 11, no. 5,				
					054103, 2017				
2017				W. Ma, J. Li, F.	"Robust control to	Yes	Yes	Yes	Yes
2017				Niu, H. Ji, and	manipulate a	100	100	100	100
				D. Sun *	microparticle with				
					electromagnetic coil				
					system," IEEE				
					Trans. Industrial				
					Electronics, vol. 64,				
					no. 11, pp.				
					8566-8577, 2017.				
2017				Z. Huang, H.	"Engineered bone	Yes	Yes	Yes	Yes
				Chu, H. Liu, J.	scaffolds with				
				Yang, and D.	dielectrophoresis-ba				
				Sun*	sed patterning using 3D printing,"				
					Biomedical				
					Microdevices, vol.				
					19, no. 4,				
					November 2017.				
2017		1		Lin SE, Lee	Stepwise	Yes	Yes	Yes	Yes
				WYW, Xu LL,	preconditioning				
				Wang YJ, Chen	enhances				
				YF, Ho KW,	mesenchymal stem				
				Qin L, Jiang	cell-based cartilage				
					regeneration				
				G*	through epigenetic				
					modification.				
					Osteoarthritis and				
					Cartilage; 2017 Sep;25(9):1541-155				
					Sep;25(9):1541-155 0.				
2017				Sun YX, Xu J,	MiR-503 promotes	Yes	Yes	Yes	Yes
2017				Xu LL, Zhang	bone formation in	100	100	100	100
				JF, Chan KM,	distraction				
				Pan XH, Li G*	osteogenesis				
				, –	through suppressing				
					Smurf1 expression.				
					Scientific Reports,				
					2017; Mar 24;				
					7(1):409.				

2017	a	a · ·	* 7	* 7		x 7
2017	Sun YX, Zhang JF, Li DJ, Xu LL, Pan XH, Li G .*	Comparing the osteoconductive potential between tubular and cylindrical	Yes	Yes	Yes	Yes
		beta-tricalcium phosphate scaffolds: an				
		experimental study in rats. Journal of Biomedical Materials Research:				
		Part B - Applied Biomaterials, 2017 Sep 29. doi: 10.1002/jbm.b.3401				
2018	T Luo, L. Fan, Y. Zeng, Y. Liu, S. Chen, J. Hou, Z. Guan, D. Ma, T. Wei, Q. Tan, R. H. W. Lam, D. Sun *	sheathless cell separation approach	No	Yes	Yes	Yes
2018	Xiangpeng Li, H. Yang, H. Huang, D. Sun *	A switching controller for high speed cell transportation by using a robot-aided optical tweezers system. Automatica, vol. 89, pp. 308-315.	No	Yes	Yes	Yes
2018	Dongce Ma, R. Wang, S. Chen, T. Luo, Y. T. Chow, D. Sun *	Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement. Biomicrofluidics, vol. 12, issue 2, 024118.	No	Yes	Yes	Yes
2019	J. Hou, T. Luo, S. Chen, S. Lin, M. M. Yang, G. Li, D. Sun*	Calcium spike patterns reveal linkage of electrical stimulus and MSC osteogenic differentiation. IEEE Transactions on Nanobioscience, vol. 18, no. 1, pp. 3-9.	No	Yes	Yes	Yes

2019	M. Xie, A.	Out-of-plane	No	Yes	Yes	Yes
2017	Shakoor, Y.	rotation control of	110	103	105	103
	Shakool, T. Shen, J. K.	biological cells with				
	Mills, D Sun *	a robot-tweezers				
	Willis, D Sull	manipulation				
		system for				
		orientation-based				
		cell surgery. IEEE				
		Transactions on				
		Biomedical				
		Engineering, vol.				
		66, no. 1, pp.				
		199-207.				
2019	K. Meng, H.	Modeling and	No	Yes	Yes	Yes
2017	Yang, Y. Wang		110	105	1 65	105
	D. Sun *	single-cell				
	D. Sull	migration induced				
		by a				
		chemoattractant-loa				
		ded microbead.				
		IEEE Transactions				
		on Cybernetics, vol.				
		49, no. 2, pp.				
		49, no. 2, pp. 427-439.				
2019	T. Luo, L. Fan,	427-439. Microfluidic	No	Yes	Yes	Yes
2019	R. Zhu, D.	single-cell	INO	168	168	168
	Sun*	manipulation and				
	Sui	analysis: methods				
		and applications.				
		Micromachines,				
		vol. 10, no. 2,				
		article 104.				
2020	T. Zheng, Z.	"A microelectrode	No	Yes	Yes	Yes
2020	Zhang, R.	array chip for	110	1 05	1 65	105
	Zhang, K. Zhu*, D. Sun	osteogenic				
	Znu ⁺ , D. Sun	differentiation of				
		mesenchymal stem				
		cells under				
		electrical				
		stimulation," Lab				
		on a Chip, vol. 20,				
		no. 2, pp. 373-383,				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			
2016	A microarray	IEEE International	Yes	Yes	Yes	Yes
	platform for	Conference on				
	high-throughput	Nano/Molecular				
	single-cell	Medicine and				
	capture and	Engineering, Macau,				
	culture	Oct. 30-Nov. 2, 2016.				

2017	Design of an	IEEE/RSJ International	Yes	Yes	Yes	Yes
	automated	Conference on				
	controller with	Intelligent Robots and				
	collision-avoidan	Systems (IROS),				
	ce capability for	Vancouver, Canada,				
	in-vivo	Sep. 24-28, 2017				
	transportation of					
	biological cells					
2018	High-throughput	IEEE International	No	Yes	Yes	Yes
	single cell	Conference on Robotics				
	trapping and	and Biomimetics, Kuala				
	patterning using a	Lumpur, Malaysia,				
	sandwiched	December 12-15, 2018				
	microfluidic chip					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Jundi Hou	PhD	September 2014	January 2018
Yuxin Sun	PhD	August 2013	August 2016
Tao Luo	PhD	September 2015	June 2018
Dongce Ma	PhD	September 2015	July 2018

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

Book Chapter:

T. Luo, L. Fan, **R. Zhu**, and **D. Sun**^{*}, "Microfluidic single-cell manipulation and analysis: methods and applications," *Microfluidics for Cells and Other Organisms (volume 1)*, pp. 104-134, edited by Danny van Noort, MDPI, March 2020.

Grant Patent:

D. Sun, Y. T. Chow, and Ran Wang, "System and method for delivery of substance into mammalian cells", USA Patent, US 10,011,848, July 2018.