The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Palladium-catalyzed Asymmetric Allylic Alkylations and Its Application in Total Synthesis of Cryptotrione and Bolivianine

鈀催化的不對稱烯丙基取代反應及其在Cryptotrione和Bolivianine全合成中的應用

	Hong Kong Team	Mainland Team
Name of Principal	Professor Henry N. C Wong	Professor Xue-Long Hou
Investigator (with title)		
Post	Research Professor of	Research Fellow
	Chemistry	
Unit / Department /	NA/Chemsitry/The Chinese	Shanghai Institute of Organic
Institution	University of HongKong	Chemistry / The Chinese
		Academy of Sciences
Contact Information	hncwong@cuhk.edu.hk	xlhou@sioc.ac.cn
Co-investigator(s)	Professor Xiao-Shui Peng	Professor Chang-Hua Ding
(with title and		Associate Research Fellow
institution)	Research Associate Professor	and
		Professor Bing-Feng Sun
		Associate Research Fellow

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

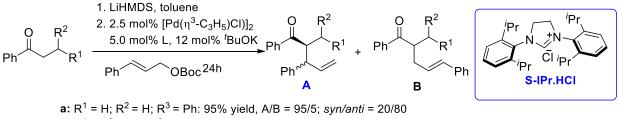
	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	01/01/2014	NA	NA
Project Completion date	31/12/2017	NA	NA
Duration (in month)	48	NA	NA
Deadline for Submission of Completion Report	31/12/2018	NA	NA

Part B: The Completion Report

5. Project Objectives

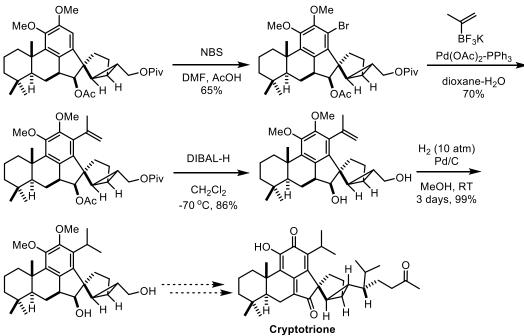
- 5.1 Objectives as per original application
 - 1. To develop an efficient protocol of new Pd-catalyzed asymmetric cyclopropanation and allylic alkylations using ferrocene-based *P*,*N* and SIOCPhox ligand series.
 - 2. To apply the newly developed Pd-catalyzed asymmetric cyclopropanation and allylic alkylations with hard carbanion to the total synthesis of cryptotrione and bolivianine.
 - 3. To synthesize potentially active compounds that could provide important insights into their structure-activity relationships via Pd-catalyzed asymmetric cyclopropanation and allylic alkylations using ferrocene-based *P*,*N* and SIOCPhox ligand series.

NSFC/RGC 8 (Revised 01/18)


- 4. To apply the newly developed protocol to the synthesis of more elaborate structures leading to the total synthesis of structurally complex and biologically significant natural products or drug lead compounds.
- 5. To strengthen the research collaboration between Hong Kong and the Chinese Mainland.
- 5.2 Revised Objectives

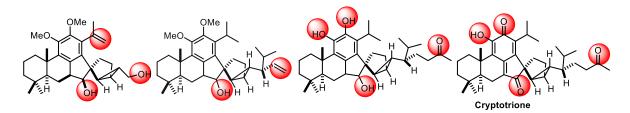
Date of approval from the RGC:	NA
Reasons for the change:	NA

6. Research Outcome


Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

A novel, simple and effective Pd/NHC-catalysed protocol has been developed to produce acyclic a-allylated ketones bearing three contiguous stereocentres with excellent regio and diastereoselectivities, starting with readily available ketones and allyl reagents. This reaction features facile yet highly efficient Pd catalysis, the use of commercially available NHC ligands and wide substrate scope. It was found that substituents on the NHC and b-substituents on ketones have a critical impact on the stereochemistry of the reaction. The synthetic applications of the methodology have also been examined preliminarily. The products from current protocol are likely to be useful in the synthesis of more complex molecules.

b: R¹ = R² = Me; R³ = Ph: 98% yield, A/B = 99/1; *syn/anti* = 92/8


With our preliminary results of producing fused bicyclo[3.1.0]hexane motif, we applied the strategies for the total synthesis of cryptotrione, one of the most bioactive members of cryptotrione family. Up to date, the critical constructing the core bicyclo[3.1.0]skeleton of cryptotrione was achieved through the conversion of the 1,5-enyne precursors into a substituted bicyclo[3.1.0]hexane unit. Upon accomplishment of our proposed formation of *trans*-polycyclic core followed by isopropylation, the key *trans*-polycyclic diol precursor with all the carbon ring systems was achieved. Obviously, the subsequent installation of the side chain followed by generation of the relevant quinone methide unit with suitable oxidative reagents from this diol adduct would eventually afford our synthetic target cryptotrione.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

In this proposal, cryptotrione is the potential active terpenes from the bark of *Cryptomeria japonica*. Therefore, the development of a general, efficient, and conceptually new strategy for the enantioselective total synthesis of cryptotrione in this proposal is particularly important and challenging. These synthetic works in our proposal will broaden the range of quinone methide terpene beyond those immediately related to cryptotrione. Since the core structure of our synthesized compounds is also similar to that of cryptotrione, and all cyclopropyl moiety and their analogs could be investigated and evaluated as biochemical tools for the study of their possible biological action, as well as serve as possible leads in the development of their relevant drug discovery. The completion of the synthesis and biological evaluation of these compounds, as well as their relevant derivatives derived after *further*

transformations on ketone/phenol group, hydroxyl groups, et al, as shown below, would provide insight in the design of the analogs of cryptotrione. These derivatives would allow us to have a better understanding of their biological action and biogenetic synthetic approach. A continuing extension of these studies to additional cryptotrione family will be also directed at further investigation of total synthesis of other family members in biomimetic pathways.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

In this funded project, the developed synthetic protocol and synthetic studies of cryptotrione family herein will broaden range and synthesis of bioactive derivatives beyond those related to cryptotrione. The relevant SAR studies of synthetic intermediates and their analogs could be investigated and evaluated for their relevant discovery of lead candidates, as well as for the study of their possible biological action and biogenetically synthetic protocol in nature, and could be applied for academic research and industry. With the development, the strategies herein can help to maintain the legacy of natural products in drug discovery and understanding of relevant biological actions. Generally, this proposed research will demonstrate the power and potential of our developed protocol to render scarce biologically active natural products readily available for chemical and biological investigations. Moreover, structural analysis of new compounds produced in this proposal will be carried out and this will lead to a greater understanding of the fundamental chemistry involved. This project would also yield invaluable information about a range of novel synthetic reactions and also a novel route for the synthesis of bioactive compounds.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

		atest Status			Author(s)	Title and Journal/ Book (with the volume pages and other necessary publishing details specified)	Submitte			
	Year of publicatio n	Year of Acceptanc e (For paper accepted but not yet published)	Under Revie w	Under Preparatio n (optional)	(bold the authors belonging to the project teams and denote the correspondin g author with an asterisk*)	(with the volume, pages and other necessary publishing details specified)	d to RGC (indicate the year ending of the relevant progress report)	report (Yes or	owle dged the supp ort of this Joint Rese arch Sche me (Yes	f
									or No)	
1	2014					Asymmetric synthesis of 3,3,5,5-tetrasubstituted 1,2-dioxolanes: total synthesis of epiplakinic acid F Org. Biomol. Chem., 2014, 12, 3686-3700.	2015	Yes	No	No
2	2014				Xiong, XD.; Deng, CL.; Peng XS.; Miao, Q.; Wong, H. N.	Heteroatom-bridged Tetraphenylenes: Synthesis, Structures, and Properties Org. Lett., 2014, 16, 3252-3255.	2015	Yes	No	No
3	2014				XS.; Wong,	Brønsted acid-catalyzed synthesis of carbazoles from 2-substituted indoles Org. Chem. Front., 2014, 1, 1197-1200.	2015	Yes	Yes	No
4	2015				H. N. C. Peng, XS.; Ylagan, R. M. P.; Siu, Y. M.; Wong, H. N. C.	Synthesis and Application of [3.3.0]Furofuranone in Total Synthesis Chem. Asian J. 2015, 10, 2070-2083.	2015	Yes	Yes	No
5	2015				Li, ZQ.; Li, QJ.; Liu, GK.; Chen, WM.; Peng, XS.; Wong, H. N. C	Gold(I)-catalyzed Domino Cyclization for the Synthesis of Tricyclic Chromones Synlett, 2015 , 1461-1464.	2015	Yes	Yes	No
6	2015				Xiong, XD.; Deng, CL.; Minaev, B. F.; Baryshnikov, G. V.; Peng, XS.; Wong, H. N.	Tetrathio and Tetraseleno[8]circulenes: Synthesis, Structures, and Properties <i>Chem. Asian J.</i> 2015 , <i>10</i> , 969-975.	2015	Yes	Yes	No
7	2015				Li, X.;	Our Expedition in Eight-Membered Ring Compounds: From Planar Dehydrocyclooctenes to Tub-Shaped Chiral Tetraphenylenes <i>Chem. Rec.</i> 2015 , <i>15</i> , 107-131.	2015	Yes	No	No
8	2015				Chen, JX.; Han, JW.; Wong, H. N. C.	Synthesis and Chiroptical Properties of Double-Helical (M)- and (P)- <i>o</i> -Oligophenylenes Org. Lett. 2015 , <i>17</i> , 4296-4299.	2015	Yes	Yes	No
9	2016				Li, X.; Han,	Palladium-Catalyzed Double Ullmann Reaction: An Approach towards Tetraphenylenes Asian J. Org. Chem. 2016, 5, 74-81 (Cover paper).	2015	Yes	Yes	No
10	2016					Iron-catalysed cross-coupling of organolithium compounds with organic halides <i>Nature Communications</i> 2016 , 7:10614 doi: 10.1038/ncomms10614.	2015	Yes	Yes	No
11	2017				Li, X.; Han,	Palladium-Catalyzed Double Suzuki Reactions: Synthesis of Dibenzo 4,5:6,7 cyclohepta 1,2,3-de naphthalenes. <i>Asian Journal of Organic Chemistry</i> 2017 , <i>6</i> , 1876-1884.	NA	Yes	Yes	No
12	2017				Chai, G. L.; Han, J. W.; Wong, H. N. C.	Asymmetric Darzens Reaction of Isatins with Diazoacetamides Catalyzed by Chiral BINOL-Titanium Complex. <i>Journal of Organic Chemistry</i> 2017 , <i>82</i> , 12647-12654.	NA	Yes	Yes	No
13	2018				Liu, Q.; Wang, B.; Peng, X. S.; Wong, H. N. C.	Reagents. Chinese Journal of Organic Chemistry 2018, 38, 40-50.	NA	Yes	Yes	No
14	2018				Wu, J. L.; Lu, Y. S.; Tang, B. C.; Peng, X. S.	Total syntheses of shizukaols A and E. Nature Communications 2018, 9. 4040	NA	Yes	Yes	No
15	2018				Lu, X. L.; Lyu, M. Y.; Peng, X. S.; Wong, H. N. C.	Gold(I)-Catalyzed Tandem Cycloisomerization of 1,5-Enyne Ethers by Hydride Transfer. Angewandte Chemie-International Edition 2018 , <i>57</i> , 11365-11368.	NA	Yes	Yes	No
16	2015				Zhang, QS., Wan, SL., Chen, D., Ding, CH., & Hou, XL.	Palladium-Catalyzed Asymmetric Intermolecular Mizoroki–Heck Reaction for Construction of a Chiral Quaternary Carbon Center <i>Chem. Commun.</i> 2015 , <i>51</i> , 12235-12238.	2015	Yes	Yes	No
17	2015				Bai, DC., Wang, WY., WY., Ding, CH., & Hou, XL.	Kinetic Resolution of Unsymmetrical Acyclic Allyl Carbonates Using Trimethylsilyl Cyanide via Pd-Catalyzed Asymmetric Allylic Alkylation <i>Synlett</i> 2015, 26, 1510-1514.	2015	Yes	Yes	No
18	2015				Li, H., Wan, SL., Ding, CH., Xu, B., & Hou, XL.	Kinetic resolution of	2015	Yes	Yes	No

			n ·				-	
19	2016		Wan, S. L. Chen, D. Liu, Q. R. Ding, C. H. Fang, P. Hou, X. L.		NA	Yes		No
20	2017		Du, J.; Liu		NA	Yes	Yes	No
21	2017			Kinetic Resolution of 5-Substituted Cyclohexenols by Palladium-Catalyzed Asymmetric Redox-Relay Heck Reaction. <i>Synthesis-Stuttgart</i> 2017, 49, 159-166.	NA	Yes	Yes	No
22	2017		Jiang, Z. Z. Gao, A.; Li H.; Chen D.; Ding, C H.; Xu, B. Hou, X. L.	Enantioselective Synthesis of Chromenes via a Palladium-Catalyzed Asymmetric Redox-Relay Heck Reaction. <i>Chemistry-an Asian Journal</i> 2017 , <i>12</i> , 3119-3122.	NA	Yes	Yes	No
23	2017		Jiang, Y. J. Zhang, G P.; Huang J. Q.; Chen D.; Ding, C H.; Hou, X L.	,	NA	Yes	Yes	No
24	2017		Huang, J Q.; Zhao, J F.; Yang, Z. Ding, C. H Hou, X. L. Peng, X. S Wong, H. N C.		NA	Yes	Yes	No
25	2017		Gao, A.; Liu X. Y.; Li, H.	Synthesis of beta,beta-Disubstituted Indanones via the Pd-Catalyzed Tandem Conjugate Addition/Cyclization Reaction of Arylboronic Acids with alpha,beta-Unsaturated Esters. <i>Journal of Organic Chemistry</i> 2017 , <i>82</i> , 9988-9994.	NA	Yes	Yes	No
26	2017			Diastereoselective Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to	NA	Yes	Yes	No
27	2017		Bai, D. C. Liu, X. Y.	Tandem Thorpe Reaction/Palladium Catalyzed Asymmetric Allylic Alkylation: Access to Chiral β-enaminonitriles with Excellent Enantioselectivity. <i>Chemistry-an Asian Journal</i> 2017 , <i>12</i> , 212-215.	NA	Yes	Yes	No
28	2018		Huang, J. Q. Liu, W. Zheng, B. H. Liu, X. Y. Yang, Z. Ding, C. H. Li, H.; Peng	Pd-Catalyzed Asymmetric Cyclopropanation Reaction of Acyclic Amides with Allyl and Polyenyl Carbonates. Experimental and Computational Studies for the Origin of Cyclopropane Formation. Acs Catalysis 2018 , 8, 1964-1972.	NA	Yes	Yes	No

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	this Joint	Accessi ble from the instituti onal reposito ry (Yes or
10/2014/Kyoto	Non-Planarity : Variations on a Theme of Tetraphenylene	pi-Molecules and Materials (CURO-pi)",	2015	Yes	Yes	No) No
11/2015/Kyoto	Synthetic Studies towards Shizukaol A and Dhilirolide A	The 5 th International Kyoto Symposium on Organic Nanostructures and Molecular Technology	2015	Yes	Yes (in the presentation)	No

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
Yin-Suo Lu	PhD	01/05/2010	31/06/2015
Chun-Lin Deng	PhD	01/08/2012	31/07/2015
Jian-Li Wu	PhD	01/08/2012	31/07/2017
Mao-Yun Lyu	PhD	01/08/2013	31/12/2017

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

NA