

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Processing and Characterization of 3D Graphene Based Thermal Interface Materials

	Hong Kong Team	Mainland Team
Name of Principal	Prof. WONG Ching Ping	Prof. BAI Shulin
Investigator (with title)		
Post	Dean of Faculty of	Executive Director
	Engineering	of the Advanced
		Technology Institute
Unit / Department /	Electronic Engineering/The	Materials Science and
Institution	Chinese University of Hong	Engineering/College of
	Kong	Engineering/Peking
		University
Co-investigator(s)	Prof. XU Dongyan	Prof. Huang Zhuping
(with title)	Prof. ZHAO Ni	Ms. ZHOU Wenling
		Mr. ZHANG Yangfei

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	01-01-2014		
Project Completion date	31-12-2017		
Duration (in month)	48		
Deadline for Submission of Completion Report	31-12-2018		

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. To design and develop a new thermal interface material (TIM) based on 3D graphene network filled with graphene nanosheets/polymer blend.

2. To experimentally characterize thermal properties of the new TIM and to understand thermal transport mechanism in the complex composite materials.

3. To experimentally characterize mechanical properties of the new TIM and to develop microscopic component assembly models to understand the deformation and failure behavior of the material.

4. To establish a correlation between processing, microstructure, thermal and mechanical properties of 3D graphene based TIMs.

5. To optimize the performance of graphene/polymer composite TIMs and to explore their applications in thermal management systems of microelectronic devices.

Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

We systematically studied thermal interface materials (TIMs) consisting of 3D graphene or boron nitride (BN) network in a polymer matrix. The project revealed that a properly designed 3D graphene or BN skeleton can could provide effective thermal transport pathways, endowing the TIMs with both high mechanical compliance and high thermal conductivity, all achieved at a low loading of fillers. (Publications #1, 2, 4, 5)

After verifying the importance of forming 3D thermal transport network, we focused specifically on low-cost fabrication methods to produce high performance TIM network. We developed a direct foaming method to fabricate a three dimensionally interconnected hierarchical porous BN/epoxy composite for thermal interface material applications. The foam-templated approach allows for construction of an isotropic porous structure with low loading of fillers and is a versatile method that can be applied to various high-thermal conductivity fillers. Based on this method, we performed a comparative study on micron-size and submicron-size BN based thermal interface materials through combining structural, morphological and thermal property characterizations as well as defect analysis. The results demonstrate that, as compared to the submicron BN fillers, the micron BN fillers can form a better aligned distribution along the three dimensional network while introducing less defects and grain boundaries, resulting in high thermal conductivity both in-plane and out-of-plane at a low filler concentration. This study provides guidelines on the design, fabrication and optimization of composite-based thermal interface materials. (Publications # 2)

Furthermore, inspired by the process of making 3D graphene/polymer composite, we developed a new fabrication process to make wood derived carbon composites that can potentially be used as TIMs, battery electrodes, and active materials for mechanical sensors. Natural wood possesses a unique 3D microstructure containing hierarchical interconnected channels along its growth direction. We reported a facile processing strategy to utilize such structure to fabricate carbon/silicone composite based flexible pressure sensors. The unique contribution of the multichannel structure on the sensor performance is analyzed by comparing the pressure response of the vertically cut and horizontally cut composite structures. The results show that the horizontally cut composite based sensors exhibit much higher sensitivity and wider linear region, due to their rough surface and largely deformable microstructure. Besides, the sensors also show little hysteresis and good cycle stability. (Publication #3) We have also explored other applications of 3D graphene such as energy storage devices. (Publication #6)

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The success of the project shows that the vertically aligned graphene/polymer composites and 3D graphene or boron nitride/epoxy composites are two effective way for preparation of thermal interface material with high thermal conductivity. Fillers with larger size, less defects is benefit for achieving high thermal conductivity. We planned to develop hydrothermal method to get graphene to self-assemble into a 3D graphene foam with small pore size and less defects. Which can act as the thermal condition pathway of thermal interface material. In addition, we will further introduce carbon nanotube, metal nanowire and boron nitride into the 3D graphene foam to synergically enhance the thermal conductivity.

7. The Layman's Summary

(describe *in layman's language* the nature, significance and value of the research project, in no more than 200 words)

Thermal management is critical for operation of various high power electronic devices. A key component of a thermal management system is the thermal interface material (TIM), which is used to improve the thermal contact between two dissimilar surfaces, e.g. the interface between the heat spreader and the microprocessor chip. Traditional TIMs, such as thermal grease, are easy to assemble and possess long-term reliability; however, with the ever increasing power density of microelectronics, these TIMs will soon become insufficient in dissipating the ultrahigh-heat-flux.

Through this proposal we have developed new TIMs with both high mechanical compliance and high thermal conductivity. The materials can be fabricated in large scale, and at low cost. Furthermore, we have combined the experimental and theoretical approaches to study the correlations among the material structures, processing conditions and thermal properties. The findings also provide guidelines to design of new high performance TIMs. The new composite TIMs developed in this project can be readily implemented into various thermal management systems, which will benefit next generation microelectronics and other high-power electronic devices.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising directly from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Latest Status of Publications		Author(s)	Title and	Submitted	Attached	Acknowledge	Accessible		
Year of	Year of	Under	Under	(bold the	Journal/ Book	to RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	(with the	(indicate	report (Yes	of this Joint	institutional
-	(For paper		-	belonging to	volume, pages	the year	or No)	Research	repository
	accepted but		(optional)	the project	and other	ending of		Scheme	(Yes or No)
	not yet			teams and	necessary	the		(Yes or No)	
	published)			denote the	publishing	relevant			
	-			corresponding	details	progress			
				author with an	specified)	report)			
				asterisk*)					

-							i -
		Haoming	"White	N.A.	Yes	Yes	Yes
2016		Fang,	graphene"				
		Shu-Lin	-				
		Bai*,	hexagonal				
		Ching Ping	boron				
		wong	nitride				
			based				
			porymeric				
			and their				
			and then application				
			in thermal				
			managemen				
			t.				
			Composites				
			Communic				
			ations, 2				
			(2016)				
			19-24.				
2018		Zhilin	A thermal	N.A.	Yes	Yes	Yes
		Tian, Jiajia	interface				
		Sun, Shaogang	material				
		Wang,Xiao	based on				
		liang Zeng,	foam				
		Shuang Zhou	IUaiii				
		Shulin Bai.	templated				
		Ni Zhao*	three-dimen				
		and	sional				
		Wong*.	hierarchical				
		8 /	porous				
			boron				
			Journal of				
			the				
			Material				
			Chemistry				
			A, 6 (2018)				
			17540				

2018			Yan	Wood	N.A.	Yes	Yes	Yes
			Huang.	Derived				
			Yun Chen.	Composites				
			Xiangvu	for High				
			Fan	Sensitivity				
			Ninggi	and Wide				
			Tungqi	Lincor Don				
			Luo, Shuana	Lillear-Kall				
			Shuang Zhou	ge Flessule				
			Zhou,	Sensing,				
			Shin-Chi	Sinall, 14				
			Chen, Ni	(2018),				
			Zhao*,	1801520				
			Ching Ping					
			Wong*					
2017			Haoming	Thermal,	N.A.	Yes	Yes	Yes
			Fang,	mechanical				
			Shu-Lin	and				
			Bai*,	dielectric				
			Ching Ping	properties				
			Wong	of flexible				
				BN foam				
				and BN				
				nanosheets				
				reinforced				
				polymer				
				composites				
				for				
				electronic				
				packaging				
				application				
				Composites				
				\cdot Part Δ				
				100(2017)				
				71.80				
2016			Dong Hon	71-00. Lligh	ΝΛ	Vac	Vac	Vac
2010			Doing Hail, Vun Hong	shialding	IN.A.	105	105	105
			Tun-nong Zhao	offootivonos				
			Zhao,	effectivenes				
			Snu-Lin Doit and	S OI				
			Bai* and	multilayer				
			wong	graphene				
			Ching Ping	oxide				
				aerogel				
				film/polym				
				er				
				composites,				
				RSC				
				Advances,				
				6 (2016),				
		 		92168.				

2015		Zhen-Kun	"Capacitan	2016	Yes	Yes	Yes
		Wu, Ziyin	ce				
		Linb, Liyi	enhanceme				
		Li, Bo	nt by				
		Song,	electroche				
		Chia-Chi	mically				
		Tuan,	active				
		Zhuo Li,	benzene				
		Kyoung-sik	derivatives				
		Moon,	for				
		Shu-Lin	graphene-b				
		Bai* and	ased				
		Ching-Ping	supercapaci				
		Wong*	tors"				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (<i>indicate the</i> <i>year ending</i> of the	Attached to this report (Yes or No)	Acknowledged the support of this Joint Research	Accessible from the institutional repository
			relevant progress report)		(Yes or No)	(Yes or No)
06/2018	Wearable sensor system based on composite materials for cardiopulmona ry monitoring	2018 European Material Research Society Spring Meeting	N.A.	Yes	Yes	No
04/2017	Bioinspired anisotropic carbon network for highly selective pressure sensing	2017 Material Research Society Spring Meeting	N.A.	Yes	Yes	No

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/
			graduation
	PhD	01/08/2015	31/07/2019
Yan Huang			

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N.A.