The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Cross-layer Analysis and Optimization for the Lifetime Reliability of MPSoCs

	Hong Kong Team	Mainland Team
Name of Principal	Dr. Xu, Qiang	Dr. Yang, Huazhong
Investigator (with title)		
Post	Associate Professor	Professor
Unit / Department /	Computer Science &	Electrical Engineering /
Institution	Engineering / The Chinese	Tsinghua University
	University of Hong Kong	
Contact Information	+852-39438436	+86-10-62788601
	qxu@cse.cuhk.edu.hk	yanghz@tsinghua.edu.cn
Co-investigator(s)	Dr. Cao, Yu	Dr. Xie, Yuan
(with title and	Associate Professor	Professor
institution)	Computer Science &	Computer Science &
	Engineering / Arizona State	Engineering / Pennsylvania
	University	State University
		Dr. Wang, Yu
		Associate Professor
		Electronic Engineering /
		Tsinghua University

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	2013-01-01	N.A.	N.A.

NSFC/RGC 8 (Revised 10/15)

Project Completion date	2016-12-31	N.A.	N.A.
Duration (in month)	48	N.A.	N.A.
Deadline for Submission of Completion Report	2017-12-31	N.A.	N.A.

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. To develop a full-system lifetime reliability simulation framework for MPSoCs

2. To investigate novel cross-layer optimization techniques to meet the lifetime reliability requirement of MPSoCs;

3. To optimize dynamic reliability management policy online to achieve better system performance and/or energy-efficiency without violating lifetime reliability constraint;

NSFC/RGC 8 (Revised 10/15)

5.2 Revised Objectives

Date of approval from the RGC: <u>N.A.</u> Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

In our DAC'14 paper, we developed an accurate yet efficient simulation framework for NBTI-induced performance degradation, which is a major lifetime reliability threat for integrated circuits. To be specific, we first presented a comprehensive NBTI analytical model that explicitly takes supply voltage, duty cycle and temperature variations into consideration. The accuracy of the proposed model is validated against cycle-accurate simulation for NBTI effects. In addition, based on the proposed model, we present a novel simulation framework for system lifetime prediction by running representative workloads only. Experimental results demonstrate that the proposed solution is much more accurate than previous solutions.

In our ITC'15 paper, we investigate the impact of clock-TSV aging in three-dimensional integrated circuits and the countermeasures to mitigate it. To be specific, we propose to insert aging sensors in the circuit and put a tunable buffer following each clock-TSV. The runtime information of the triggered alarms in these aging sensors are used for efficient and effective online diagnosis, with which we further propose three online diagnosis and clock tuning methods to diagnose the root cause of the failure, associated with an efficient tuning algorithm for each method. Experimental results show that dramatic reliability enhancement is achieved with the proposed solutions.

Timing error is a serious concern for the lifetime reliability of integrated circuits. In our ICCAD'13 paper, we proposed a new forward timing error correction scheme, namely ForTER, which predicts whether the occurrence of timing errors would propagate to the next level of sequential elements and corrects them without necessarily borrowing timing slack. The proposed technique can be combined with other timing error resilient circuit design techniques to further improve circuit performance, as demonstrated in our experimental results with various benchmark circuits.

A large and growing number of applications are inherently error-tolerant, which do not require "strict" correctness but rather approximate correctness. We have proposed several approximate computing techniques (ICCAD'13, GVLSI'15, ICCAD'15) to tradeoff reliability and performance to achieve better energy-efficiency, including approximate adder design, approximate memory access, and approximate techniques for large-scale Eigen decomposition.

Security flaws in integrated circuits prevent the normal operation of integrated circuits during their lifetime. In this project, we have also investigated several security issues (ICCAD'14, ASPDAC'15, ICCAD'15), including probing attack, Trojan side-channel, and physical unclonable functions.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Approximate computing has gained significant tractions in recent years, but it is still in its infancy. We are extending the proposed research to tackle the various problems in approximate computing. To be specific, we plan to monitor application quality variations at runtime and conduct dynamic quality management to achieve controlled quality-efficiency tradeoffs in approximate computing.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

By considering the inherent correlations between failure mechanisms and the impact of runtime workloads, we develop novel hierarchical analytical model and cross-layer simulation and optimization framework for the lifetime reliability of integrated circuits. As system failures during the warrantee period not only incur high replacement cost but also damage the reputation of the system provider, the significance and value of the project is evident.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
_	(For paper		_	belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publishing				
				asterisk*)	details				
					specified)				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.*)

Month/Year/	/ Title	Conference	Submitted	Attached	Acknowledged	Accessible
Place		Name	to RGC (indicate the	to this	the support of this Joint	from the institutional repository (Yes or No)
11/2013/ San Jose	ForTER: a forward error correction scheme for timing error resilience	International Conference on Computer-Aide d Design	2014	Yes	Yes	Yes
11/2013/ San Jose		International Conference on Computer-Aide d Design	2014	Yes	Yes	Yes

06/2014/	On the Simulation	Design	2014	Yes	Yes	Yes
San	of NBTI-Induced	Automation				
Francisco	Performance	Conference				
	Degradation					
	Considering					
	Arbitrary					
	Temperature and					
	Voltage Variations					
11/2014/	On Trojan side	International		Yes	Yes	Yes
San Jose	channel design and	Conference on				
	identification	Computer-Aide				
		d Design				
01/2015/	Vulnerability	Asia Pacific		Yes	Yes	Yes
Chiba,	analysis for crypto	Design				
Japan	devices against	Automation				
	probing attack	Conference				
05/2015/	ApproxMA:	ACM Great		Yes	Yes	Yes
Pittsburgh	Approximate	Lakes				
	Memory Access	Symposium on				
	for Dynamic	VLSI				
	Precision Scaling					
10/2015/	On diagnosable	International		Yes	Yes	Yes
Anaheim	and tunable 3D	Test Conference				
	clock network					
	design for lifetime					
	reliability					
	enhancement					
11/2015/	ApproxEigen: An	International		Yes	Yes	Yes
Austin	Approximate	Conference on				
	Computing	Computer-Aide				
	Technique for	d Design				
	Large-Scale					
	Eigen-Decompositi					
	on					
11/2015/	BoardPUF:	International		Yes	Yes	Yes
Austin	Physical	Conference on				
	Unclonable	Computer-Aide				
	Functions for	d Design				
	Printed Circuit					
	Board					
	Authentication					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	e	Date of thesis submission/
			graduation
Wang, Ting	Ph.D.	08/2012	03/2017
Zhang, Qian	Ph.D.	08/2013	08/2017

Tian, Ye	Ph.D.	08/2015	08/2019
			Approximate
			Accelerator Design
			and Optimization

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N.A.