The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Metal/Oxide Nanostructures as Plasmonic Catalysts for the Synthesis of Organic Molecules 金屬/氧化物納米結構作為合成有機分子的表面等離子體共振催化劑的研究

	Hong Kong Team	Mainland Team
Name of Principal	Prof. WANG Jianfang	Prof. YAN Chun-Hua
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Physics/CUHK	Chemistry/PKU
Institution		
Contact Information	Room G9, Science Center	292 Cheng Fu Road
	North Block	College of Chemistry and
	Department of Physics	Molecular Engineering
	The Chinese University of	Peking University
	Hong Kong	Hai Dian District, Beijing
	Shatin, Hong Kong SAR	100871, Beijing
Co-investigator(s)		Prof. SUN Ling-Dong
(with title and		Chemistry/PKU
institution)		

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	1 Jan. 2015		
Project Completion date	31 Dec. 2018		

NSFC/RGC 8 (Revised 01/18)

Duration (in month)	48	
Deadline for Submission of Completion Report	31 Dec. 2019	

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

 Synthesize colloidal (metal nanocrystal core)/(oxide semiconductor shell) nanostructures.
 Understand the plasmon-induced hot-electron injection behavior in the core/shell nanostructures.
 Understand the plasmonic photocatalytic activity of the core/shell nanostructures in organic transformation. 4. Find out the correlation between the plasmon-induced hot-electron injection behavior and the plasmon-enhanced photocatalytic activity in the core/shell nanostructures.
5. Explore the plasmon-induced hot-hole injection and its role for plasmon-enhanced catalytic reactions by coating p-type semiconductor shell.
6. Design colloidal (metal core)/(semiconductor shell)nanostructures as high-performance versatile plasmonic photocatalysts for different chemical reactions.

5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

1. 2. 3. NSFC/RGC 8 (Revised 01/18)

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

The major findings and research outcome for this project are summarized below. (i) We developed chemical methods for the synthesis of a variety of colloidal plasmonic metal nanocrystals, including (metal core)@(semiconductor shell) nanostructures, porous Au nanoparticles (Output No. 6: *Nanoscale* **2018**, *10*, 18473), Au nanocrystals site-selectively deposited with Pd, Pt (Output No. 2: *Adv. Funct. Mater.* **2017**, *27*, 1700016; Output No. 3: *J. Am. Chem. Soc.* **2017**, *139*, 13837) and CeO₂ (Output No. 9: *J. Am. Chem. Soc.* **2019**, *141*, 5083). These nanocrystals and nanostructures enable us to study and understand the role of localized plasmons in driving chemical transformations for both solar-to-fuel production and organic synthesis.

(ii) We found that plasmonic hot holes require to be neutralized so that plasmonic hot electrons can drive chemical reactions in a sustainable way (Output No. 1: ACS Appl. Mater. Interfaces 2017, 9, 2560). Otherwise hot electrons will be pulled back by hot holes and get recombined in the metal nanocrystal, without injecting into the semiconductor or participating in any reaction. In this regard, care must be taken when (metal core)@(semiconductor shell) nanostructures are designed for the use of plasmons to drive chemical reactions. When one type of plasmonic charge carriers is consumed in the reaction, the other type must be consumed to allow for the reaction to continue.

(iii) An all-inorganic catalyst, mimicking the functions of the two major proteins in nitrogenases, was designed by depositing Au nanocrystals on ultrathin TiO₂ nanosheets with oxygen vacancies (Output No. 4: *J. Am. Chem. Soc.* **2018**, *140*, 8497). The catalyst accomplishes high-efficiency photodriven N₂ fixation in a "working-in-tandem" manner at room temperature and atmospheric pressure under visible light. The oxygen vacancies on the TiO₂ nanosheets act as activation sites to adsorb N₂ molecules and reduce the activation barrier, while the Au nanocrystals provide electrons through plasmon excitation. A similar structure was also designed by depositing Au nanocrystals on graphitic carbon nitride nanosheets for photocatalytic H₂ generation (Output No. 5: *Phys. Chem. Chem. Phys.* **2018**, *20*, 22296). Moreover, we further realized N₂ photofixation under near-infrared light by depositing site-selectively CeO₂ on Au nanorods (Output No. 9: *J. Am. Chem. Soc.* **2019**, *141*, 5083).

(iv) We showed that the deposition of catalytic materials at the hot spot sites on Au nanocrystals can lead to higher photocatalytic activities. This was realized by selectively depositing Pd at the ends of Au nanobipyramids for Suzuki coupling reactions (Output No. 2: *Adv. Funct. Mater.* **2017**, *27*, 1700016) and CeO₂ at the ends of Au nanorods for N₂ photofixation (Output No. 9: *J. Am. Chem. Soc.* **2019**, *141*, 5083). We reasoned that the local electromagnetic field enhancement at the hot spots is larger, which causes the generation of more hot electrons and therefore higher photocatalytic activities. More experimental and theoretical investigations will be required to further confirm this point.

(v) We contributed an invited progress report on the use of localized plasmons to drive chemical transformations (Output No. 7: *Adv. Mater.* **2018**, *30*, 1802227).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

We have shown in this project that localized plasmons can be used to drive various chemical reactions. Plasmon excitation can generate hot charge carriers, which can enable and accelerate reactions under proper conditions. In traditional semiconductor photocatalysts, hot charge carriers are generated through the excitation of photons with energies larger than the bandgap of the semiconductor.

The bandgap is fixed for a given semiconductor. Plasmon excitation offers a new means for the generation of hot charge carriers. An extremely attractive feature of plasmon-driven generation of hot charge carriers is that the plasmon energy of noble metal nanocrystals can be synthetically controlled over the entire solar spectral range. The control of the plasmon energy is much facile than the variation of the bandgap energy of a semiconductor. We think that there are two major future developments along the direction of this project. One is the deep understanding of the rich involved processes, including plasmon excitation, plasmon decay, charge carrier generation and separation, charge carrier transfer, and redox reactions. This is not an easy task because it requires the knowledge from inorganic chemistry, electromagnetism, optics, solid state physics, semiconductor physics, physical chemistry and organic chemistry. The other is the dramatic improvement of the catalytic activities of plasmonic photocatalysts for different reactions towards the practically useful level through the careful systematic design and development based on the fundamental understanding. Although much understanding on the separate aspects of this topic has been achieved, a tremendous amount of effort is still required to gain an integrated, complete picture.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Localized plasmons are associated with noble metal nanoparticles. They refer to the collective oscillations of nearly free electrons in noble metal nanoparticles. The plasmon energy can be synthetically varied over a wide range from the ultraviolet to the infrared region by changing the composition, shape, size, and environment. Plasmonic nanoparticles can interact extremely strongly with light. Upon excitation, they can cause enormous electromagnetic field enhancement in the nanoscale region around them. They can generate hot charge carriers, including electrons and holes, which possess energies above their equilibrium values. Plasmon excitation offers a new means for the photogeneration of hot charge carriers for driving a variety of chemical reactions for solar-to-fuel conversion and green organic synthesis. In contrast, the photogeneration of hot charge carriers in semiconductors requires photons with energies larger than the bandgap. In this project, we synthesized different types of metal and metal-semiconductor nanostructures and realized the plasmonic driving of chemical reactions. The studied reactions include Suzuki coupling, selective aerobic oxidation of alcohols, N₂ phtofixation, and water splitting. Decent photocatalytic activities and the understanding of the mechanisms to a certain degree are achieved for these reactions under ultraviolet and visible light.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	e Latest Status	of Publicat	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of publication	Year of Acceptance	Under Review	Under Preparation	(bold the authors	Journal/ Book	RGC (indicate the	to this	d the support	
	(For paper accepted but not yet published)		(optional)	belonging to the project teams and denote the corresponding author with an asterisk*)		year ending of the relevant progress report)	or No)	Research Scheme (Yes or No)	repository (Yes or No)
2016				Feng Qin,	Thickness	No	Yes	No	Yes
(No. 1)				Tian Zhao, Ruibin Jiang, Nina Jiang, Qifeng Ruan, Jianfang Wang* , Ling-Dong Sun* , Chun-Hua Yan* , Hai-Qing Lin	Control Produces Gold Nanoplate s with Their Plasmon in the Visible and Near-Infra red Regions, Advanced Optical Materials, vol 4, pp				
2017				Henglei Jia,	76-85.	Vec 2016	Vec	Yes	Yes
(No. 2)				-	prayed		105	105	1 55

2017		Xingzhong	Selective	No	Yes	Yes	Yes
(No. 3)		Zhu,	Pd				
()		Henglei Jia,					
		•	n on Au				
		Zhu, Si	Nanobipy				
		Cheng,	ramids				
		Xiaolu	and Pd				
		Zhuo, Feng	Site-Depe				
		Qin, Zhi	ndent				
		Yang,*	Plasmonic				
		Jianfang	Photocatal				
		Wang*	ytic				
		8	Activity,				
			Advanced				
			Functiona				
			1				
			Materials,				
			vol 27,				
			1700016,				
			15 pages.				
2017		Xingzhong	Realizatio	No	Yes	Yes	Yes
(No. 4)		Zhu, Hang	n of Red				
		Kuen Yip,	Plasmon				
		Xiaolu	Shifts up				
		Zhuo,	to ~900				
		Ruibin	nm by				
		Jiang, Jianli					
		Chen,	ping				
		Xiao-Ming	Elongated				
		Zhu, Zhi	Au				
		Yang,*	Nanocryst				
		Jianfang	als,				
		Wang*	Journal of				
			the				
			American				
			Chemical				
			Society,				
			vol 139,				
			рр 13837-13				
			13837-13 846.				
			040.				

2018		Jianhua	High-Effi	No	Yes	Yes	Yes
(No. 5)		Yang,	ciency	110	1.00		
(1.01.0)		Yanzhen	"Working				
		Guo, Ruibin	-in-Tande				
		Jiang, Feng	m"				
		Qin, Han	Nitrogen				
		Zhang,	Photofixat				
		Wenzheng	ion				
		-	Achieved				
		Lu, Lianfang					
		Jianfang Wang*	by Assembli				
		Wang*,					
		Jimmy C. Yu	ng Plasmonic				
		ru					
			Gold				
			Nanocryst				
			als on				
			Ultrathin				
			Titania				
			Nanosheet				
			s, Journal				
			of the				
			American				
ſ			Chemical				
			Society,				
			vol 140,				
			pp				
			8497-850				
			8.				
2018		Yanzhen	Understan	No	Yes	Yes	Yes
(No. 6)		Guo,	ding the				
` '		Henglei Jia,	Roles of				
ſ		Jianhua	Plasmonic				
		Yang, Hang					
		Yin, Zhi	Nanocryst				
			al Size,				
		Jianfang	Shape,				
		Wang*,	Aspect				
		Baocheng	Ratio and				
		Yang	Loading				
ſ		1 ang	Amount				
			in $Au/a \subset N$				
ſ			Au/g-C ₃ N				
ſ			4 Hybrid				
1			Nanostruc				
			tures for				
			Photocatal				
			Photocatal ytic				
			Photocatal ytic Hydrogen				
			Photocatal ytic Hydrogen Generatio				
			Photocatal ytic Hydrogen Generatio n,				
			Photocatal ytic Hydrogen Generatio n, Physical				
			Photocatal ytic Hydrogen Generatio n,				
			Photocatal ytic Hydrogen Generatio n, Physical				
			Photocatal ytic Hydrogen Generatio n, Physical Chemistry Chemical				
			Photocatal ytic Hydrogen Generatio n, Physical Chemistry Chemical Physics,				
			Photocatal ytic Hydrogen Generatio n, Physical Chemistry Chemical				

2018 (No. 7)	Jinhui Hu, Ruibin Jiang,* Han Zhang, Yanzhen Guo, Jing Wang, Jianfang Wang *	Porous	No	Yes	Yes	Yes
2018 (No. 8)	Jianhua Yang, Yanzhen Guo, Wenzheng Lu, Ruibin Jiang,* Jianfang Wang *	Emerging Applicatio ns of Plasmons in Driving CO ₂ Reduction and N ₂ Fixation, Advanced Materials, vol 30, 1802227, 21 pages.	No	Yes	Yes	Yes
2019 (No. 9)	Yanzhen Guo, Xingzhong Zhu, Nannan Li, Jianhua Yang, Zhi Yang,* Jianfang Wang *, Baocheng Yang	Molecular Sensitiviti es of Substrate- Supported Gold Nanocryst als, The Journal of Physical Chemistry C, vol 123, pp 7336-734 6.	No	Yes	Yes	Yes

2019	Henglei Jia,	Site-Selec	No	Yes	Yes	Yes
(No. 10)	Aoxuan Du,		110	105	105	103
(100.10)	Han Zhang,					
	Jianhua	Crystallin				
	Yang, Ruibin	e Ceria with				
	Jiang,*	Oxygen				
	Jianfang	Vacancies				
	Wang*,	on Gold				
		Nanocryst				
	Zhang*	als for				
		Near-Infra				
		red				
		Nitrogen				
		Photofixat				
		ion,				
		Journal of				
		the				
		American				
		Chemical				
		Society,				
		vol 141,				
		pp				
		5083-508				
		6.				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
				(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress report)			
December/2	Colloidal	The International	Yes, 2016	Yes	Yes	No
015/Honolul	Plasmonic	Chemical Congress of	,			
	Metal	Pacific Basin				
	Nanocrystals	Societies (PacifiChem				
(No. 11)	5	2015)				
August/2016	Colloidal	252nd American	Yes, 2016	Yes	Yes	No
/Philadelphi	Plasmonic	Chemical Society				
a,	Nanocrystals	National Meeting &				
Pennsylvani		Exhibition				
a, USA						
(No. 12)						

October/201	Plasmonic	232th Electrochemical	No	Yes	Yes	No
7/Washingto	Driving of	Society (ECS)				
n,	Chemical	Meeting				
DC/National	Reactions					
Harbor,						
Maryland,						
USA						
(No. 13)						
August/2018	Anisotropic	256th ACS National	No	Yes	Yes	No
/Boston,	Plasmonic Light	Meeting & Exhibition				
Massachuset	Scattering					
ts, USA						
(No. 14)						

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
YANG Jianhua (No. 15)	PhD	August 2015	September 2018
YIP Hang Kuen (No. 16)	PhD	August 2014	July 2018

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

The collaborations with three research groups from the mainland have been established. They are listed below.

(i) Prof. YANG Zhi from the Department of Micro/Nano Electronics of Shanghai Jiao Tong University.

(ii) Prof. JIANG Ruibin from the School of Materials Science and Engineering of Shaanxi Normal University.

(iii) Prof. ZHANG Chun-yang from the College of Chemistry, Chemical Engineering and Materials Science of Shandong Normal University.