RGC Ref.: N_CUHK437/16 NSFC Ref. : 11661161017 (please insert ref. above)

The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Mathematical and numerical study of non-conforming finite element methods for Maxwell's equations in inhomogeneous media and related inverse problems

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Zou Jun	Duan Huoyuan
Investigator (with title)		
Post	Choh-Ming Li Professor of	Professor of Mathematics
	Mathematics,	
	and Chairman,	
	Department Mathematics	
Unit / Department /	Department Mathematics,	School of Mathematics and
Institution	The Chinese University of	Statistics, Wuhan University
	Hong Kong	
Contact Information	zou@math.cuhk.edu.hk	hyduan.math@whu.edu.cn
Co-investigator(s)	N/A	Jiang Daijun,
(with title and		Associate Professor,
institution)		School of Mathematics
		and Statistics,
		Central China Normal
		University;
		Xiang Hua, Professor,
		School of Mathematics and
		Statistics, Wuhan University

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval
			(musi de quoiea)
Project Start date	1 January 2017	1 January 2017	
Project Completion date	31 December 2020	30 June 2021	1 June 2020
Duration (in month)	48	54	1 June 2020
Deadline for Submission of Completion Report	31 December 2021	30 June 2022	1 June 2020

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To develop non-conforming finite element methods (NFEMs) for three-dimensional Maxwell's equations in inhomogeneous media with non- H^1 or high frequency solutions.
 - 2. To conduct a large number of numerical experiments for the newly proposed NFEMs, and improve the NFEMs based on the numerical experiments so that the resulting NFEMs achieve optimal convergence for Maxwell's equations in inhomogeneous media.
 - 3. To establish the stability, convergence and error estimates of the new non-conforming finite element methods.
 - 4. To apply the proposed NFEMs to solve some other important mathematical and physical model equations that involve the div or curl operator or both.
 - 5. To study the mathematical formulation and regularizations for the inverse problem of recovering the electric permittivity and magnetic permeability in Maxwell's equations in inhomogeneous media, and analyze the stability and convergence of the discretized regularizations of the Maxwell inverse problem by the new NFEMs.
- 5.2 Revised Objectives

The same as the original objectives.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

Due to one-page limitation, we describe those most important findings and research outcome below.

We have developed a series of efficient numerical methods and the fast numerical algorithms and solvers based on these methods for various Maxwell related model systems in inhomogeneous media with singular or high oscillating solutions. These include optimal controls of Maxwell system [1], the linear and nonlinear acoustic and optical wave systems [3][6], electromagnetic scattering problems [5], time-harmonic Maxwell systems [11], the eddy current problem [12] and Maxwell variational inequalities [14]. In addition, we have also developed the adaptive FEMs for the quasilinear Maxwell system [15] and a group of mixed FEMs for the Maxwell eigenproblem [16]. We have conducted a very large number of numerical experiments to demonstrate and verify the efficiency, stability and accuracies of all these newly proposed numerical methods and the fast numerical algorithms and solvers.

We have developed a series of systematical frameworks and theories that enabled us to establish the stability, convergence and error estimates for all the new numerical methods and the fast numerical algorithms initiated and proposed in this project for various Maxwell related model systems in inhomogeneous media with singular or high oscillating solutions as listed in the above publications [1][3][5][6][11][12][14][15]16].

We have applied our newly developed numerical methods in [1][3][5][6][11][12][14][15]16] to some other important mathematical and physical models of partial differential equations. This includes the magnetohydrodynamic flow [2], the singular Maxwell saddle point systems [4], the eddy current Maxwell problem [12], the nonlinear fractional systems [13] and the Maxwell variational inequality system [14] and the quasilinear Maxwell system [15].

We have developed in this project a series of mathematical and numerical analysis theories for solving various inverse problems that are closely related to Maxwell systems in inhomogeneous media. This includes a new theory that enables us to establish the unique identifiability of the shape and physical properties of the inhomogeneous inclusions associated with both the inverse acoustic and Maxwell scattering problems [7][8]; we developed some creative theories for analysing electromagnetic plasmonic metasurfaces and mathematically explain essential physical changes of electromagnetic metasurface at resonances [9], as well as for quantitatively understanding the superresolution in recovering embedded electromagnetic sources in high contrast media [10]; we conducted a systematic mathematical and numerical study of an inverse eddy current Maxwell model in inhomogeneous media, formulated the inverse problem as a constrained optimization with a Tikhonov regularization, and analysed the stability and convergence of the discretized regularized FE solutions [12]; we developed new theories to enable us to achieve convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems [17] and the inverse Robin and flux problems by partial measurements [18], and the quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse Robin problems [19].

In addition to many other joint collaboration outcome, the major findings and research outcome reported in publications [11][16][17][18][19] were the most important results achieved by the joint collaboration between the Hong Kong and Mainland teams.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Motived by the theoretical and numerical results obtained in this project, we find the following topics of great interest and potential that deserve further development.

The numerical solutions of the large-scale finite element systems arising from various Maxwell's systems in inhomogeneous media are mostly computationally very expensive. It has remained to be a great challenge to construct efficient solvers for these large-scale systems. One of the most promising strategies for this is to develop efficient preconditioning type iterative solvers for solving such large-scale discrete systems so that the convergence and convergence rates of these solvers are optimal. And more importantly, it is of great desire to construct iterative solvers whose convergence is independent of some key parameters, such as the physical parameters in the model systems, the mesh size, the regularization parameters and high wavenumbers. We have made some important progress in this direction through this project and developed efficient preconditioning type iterative solvers for some special Maxwell systems. But tremendous more effort should be made in this direction.

In addition, to better understand the aforementioned efficient preconditioning type iterative solvers and their performance, it is necessary and of great practice to develop some general frameworks and theories for analysing the efficiency, stability and complexities of these iterative solvers.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

We have developed a series of novel numerical methods for more efficiently solving various Maxwell's systems in inhomogeneous media and their related inverse problems. We have also established a set of systematic mathematical theories to help analyse and understand the stability and convergence of these numerical methods, especially for the challenging cases with high frequency solutions, non-solutions, or solutions with very low regularities in the entire physical domain. The numerical solutions of the large-scale discretized systems arising from various Maxwell's systems in inhomogeneous media have been of great challenge. This project has made a significant contribution to this challenging and frontier area, and developed some efficient solvers for these large-scale discrete systems and proved that the convergence and convergence rates of these solvers are optimal, independent of the mesh size and wavenumbers.

The numerical methods and solvers that are developed in this project are efficient and effective not only for the Maxwell's systems, but also for many other important mathematical models of partial differential equations. These new numerical methods are also applied for solving the related mathematically ill-posed Maxwell inverse problems, and their stability and convergence can be analysed using the mathematical theories established in this project.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Latest Status of		of	Author(s)	Title and Journal/ Book	Submitted to RGC	Attached	Acknowledged	Accessible	
	Publica	ations		(bold the authors	(with the volume, pages and	(indicate the year	to this	the support of	from the
Year of	Year of	Under	Under	project teams and	details specified)	relevant progress	(Yes or	Research	repository
publication	(For paper	Review	Preparation	denote the		report)	No)	Scheme	(Yes or No)
	accepted		(optional)	corresponding				(Yes or No)	
	published)			asterisk*)					
(1)				Irwin	Edge Element	31-12-2018	Yes	Yes	Yes
2017				Yousept	method for				
				and	Optimal control of				
				Jun Zou*	stationary				
					Maxwell system				
					with Gauss Law.				
					SIAM J. Numer.				
					Anal., 55 (2017),				
					2787–2810.				
(2)				Yinnian He	A priori estimates	31-12-2018	Yes	Yes	Yes
2018				and	and optimal finite				
				Jun Zou*	element				
					approximation of				
					the MHD flow in				
					smooth domains,				
					ESAIM: Math.				
					Model. Numer.				
					Anal. 52 (2018)				
					181-206.				
(3)				Haijun Wu	Finite element	31-12-2018	Yes	Yes	Yes
2018				and	method and its				
				Jun Zou*,	analysis for a				
					nonlinear				
					Helmholtz				
					equation with high				
					wave numbers.				
					SIAM J. Numer.				
					Anal. 56 (2018).				
					1338-1359.				

(4) 2018	Na Huang, Chang-Feng	Spectral Analysis, Properties and	31-12-2018	Yes	Yes	Yes
	Ma and	Nonsingular				
	Jun Zou*,	Preconditioners				
		for Singular				
		Saddle Point				
		Problems,				
		Comput. Methods				
		Appl. Math. 18				
(5)		(2018), 237–256.	21.12.2010	X 7	X 7	X 7
(5)	Na Huang,	Analysis on block	31-12-2018	Yes	Yes	Yes
2017	Chang-Feng	diagonal and				
	Ivia and	urlangular				
	Jun Zou ⁺ ,	preconditioners for				
		an electromagnetic				
		scattering				
		problem.				
		Computers and				
		Mathematics with				
		Applications 74				
		(2017),				
		2856–2873.				
(6)	I.G.	Domain	31-12-2018	Yes	Yes	Yes
2020	Graham,	decomposition				
	E.A. Spence	with local				
	and	impedance				
	Jun Zou*,	conditions for the				
		Helmholtz				
		equation with				
		absorption. SIAM				
		J. Numer. Anal. 38				
		(2020), 2515-2543				
(7)	Huaian	Unique		Yes	Yes	Yes
2021	Diao, Long	continuation from				
	Zhang,	a generalized				
	Hongyu Liu	impedance				
	and	edge-corner for				
	Jun Zou*,	Maxwell's system				
		and applications to				
		inverse problems.				
		Inverse Problems				
		37 (2021),				
		035004.				

(8)		Xinlin Cao,	On novel	Yes	Yes	Yes
2021		Huaian	geometric			
		Diao,	structures of			
		Hongyu Liu	Laplacian			
		and	eigenfunctions in			
		Jun Zou*,	\mathbb{R}^3 and			
			applications to			
			inverse			
			problems. SIAM			
			J. Math. Anal. 53			
			(2021),			
			1263-1294.			
(9)		Habib	Mathematical	Yes	Yes	Yes
2020		Ammari,	analysis of			
		Bowen Li	electromagnetic			
		and	plasmonic			
		Jun Zou*,	metasurfaces.			
			SIAM Multiscale			
			Model. Simul. 18			
			(2020), 758-797.			
(10)		Habib	Superresolution in	Yes	Yes	Yes
2020		Ammari,	recovering			
		Bowen Li	embedded			
		and	electromagnetic			
		Jun Zou*.	sources in high			
		,	contrast media.			
			SIAM J. Imag.			
			Sci. 13 (2020).			
			1467-1510.			
(11)		Ying Liang.	Preconditioners	Yes	Yes	Yes
2021		Hua Xiang.	and their analyses	1.00	1	1.00
-		Shivang	for edge element			
		Zhang	saddle-point			
		and	systems arising			
		Jun Zou*.	from			
		· ···· ,	time-harmonic			
			Maxwell			
			equations.			
			Numerical			
			Algorithms 86			
			(2021), 281-302.			
(12)		Junging	Mathematical and	 Yes	Yes	Yes
2020		Chen, Ying	numerical study of	-	-	-
		Liang	a			
		and	three-dimensional			
		Jun Zou*.	inverse eddv			
		,	current problem.			
			SIAM J. Appl.			
			Math. 80 (2020)			
			1467-1492.			

(13)	Dongling	Long-time	Yes	Yes	Yes
2020	Wang,	behavior of			
	Aiguo Xiao	numerical			
	and	solutions to			
	Jun Zou*,	nonlinear			
		fractional			
		ODEs. ESAIM:			
		Math. Model.			
		Numer. Anal.			
		(M2AN) 54			
		(2020), 335-358.			
(14)	Malte	Adaptive edge	Yes	Yes	Yes
2020	Winckler,	element			
	Irwin	approximation for			
	Yousept	H(curl) elliptic			
	and	variational			
	Jun Zou*,	inequalities of			
		second			
		kind. SIAM J.			
		Numer. Anal. 58			
		(2020),			
		1941-1964.			
(15)	Yifeng Xu,	An adaptive edge	Yes	Yes	Yes
2020	Irwin	element			
	Yousept	approximation of a			
	and	quasilinear			
	Jun Zou*,	H(curl)-elliptic			
		problem. Math.			
		Models Methods			
		Appl. Sci. (M3AS)			
		30 (2020),			
		2799-2826.			
(16)	Huoyuan	Mixed finite	Yes	Yes	Yes
2021	Duan,	element method			
	Junhua Ma	with Gauss's law			
	and	entorced for the			
	Jun Zou*,	Maxwell			
		eigenproblem.			
		SISC J Sci.			
		Comput. 43			
		(2021),			
		A3677-A3712.			

(17) 2020		De-I Cher Daij Jianş and Jun	Han n, un g Zou* ,	Convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems. Inver se Problems 36 (2020), 075001.	Yes	Yes	Yes
(18)	2021	De-I Cher Daij Jiang You and Jun	Han n, un g, Irwin sept Zou* ,	Variational source conditions for inverse Robin and flux problems by partial measurements. Inverse Problems and Imaging, accepted in 2021. doi: 10.3934/ipi.20 21050.	Yes	Yes	Yes
(19) 2018		Daij Jianş Feng and Jun	un g, Hui g Zou* ,	Quadratic convergence of Levenberg-Marqu ardt method for elliptic and parabolic inverse Robin problems. ESAI M: Math. Model. Numer. Anal. (M2AN) 52 (2018), 1085-1107.	Yes	Yes	Yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference	Submitted to	Attached	Acknowledged	Accessible
Place		Name	RGC (indicate	to this	the support of	from the
			the year	report	this Joint	institutional
			ending of the	(Yes or	Research	repository
			relevant	No)	Scheme	(Yes or No)
			progress		(Yes or No)	
		· · ·	report)			
May 29 -	Adaptive finite	International	31-12-2018	Yes	Yes	No
June 2, 2017,	element methods	Applied				
Hangzhou,	for general	Inverse				
China.	inverse problems	Problems				
		Conference				
September	Direct Sampling	International	31-12-2018	Yes	Yes	No
29-October	Methods for	Conference				
2, 2018,	Nonlinear Inverse	on				
Yonsei,	Problems	Computational				
Korea		Mathematics				
09/2018/	Efficient adaptive	Workshop on		Yes	Yes	No
Singapore	nodal	Oualitative and				
81	finite element	Ouantitative				
	methods	Approaches to				
	for general	Inverse				
	ill-posed	Scattering				
	inverse problems	Problems				
	inverse problems.	September				
		24-28				
		2018				
		Singanore				
03/2019/	Direct sampling	SIAM		Ves	Ves	No
Spokane	methods	Conference on		105	103	110
	for general	Computational				
USA		Computational				
	nnohlana	Engineering				
	problems.	CSE10)				
		(CSE19),				
		rebruary				
		23-March 1,				
		2019 at the				
		Spokane				
		Convention				
		Center,				
		Spokane,				
		Washington,				
		USA.				

06/2021/	Robust and fast	Workshop on	Yes	Yes	No
Changsha,	direct	Efficient and			
China	sampling	fast			
	methods for	numerical			
	nonlinear inverse	methods			
	problems.	and			
	1	applications.			
06/2021/	Robust	Symposium on	Yes	Yes	No
Chengdu,	Preconditioners	Scientific			
China	for	Computing:			
	Large-scale	Theory and			
	Systems	Applications.			
	Arising from				
	Various				
	Maxwell				
	Equations.				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name Degree registered for		Date of registration	Date of thesis
			submission/
			graduation
Qile Yan	MPhil	August 2016	August 2018
Xin Su	MPhil	August 2016	July 2018
Ying Liang	PhD	August 2016	May 2021
Bowen Li	PhD	August 2017	May 2021

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

Honours/prizes Hong Kong PI received:

the PI was elected as a Fellow of the Society for Industrial and Applied Mathematics (SIAM) in 2019;

the PI was elected as a Fellow of the American Mathematical Society (AMS) in 2022.

SIAM and AMS are the most largest and influential mathematical societies in the world. SIAM Fellows and AMS Fellows are the highest academic honours a mathematician can receive from the two societies.

the PI received the prestigious China National Thousand Talents Program through Wuhan University.

Collaborations:

With the fundamental support of this joint NSFC/RGC research project, along with partial support from Chinese University of Hong Kong, the PI has taken part in many international conferences and delivered invited talks, and visited the following leading researchers who work in the areas that are closely related to the project. The PI has also invited some of the leading experts in the related areas to visit the PI and his research team, as specified below. The PI has established close and successful collaborations with most of these experts; see also detailed research activities and outcomes in Item 6 that were carried out and achieved during this project. Most of these visits by PI or his collaborators could not continue after the outbreak of the worldwide COVID-19 pandemic since the start of 2020.

Visits by collaborators at CUHK:

Prof. Bernd Hofmann (Technical University of Chemnitz, Germany). (2 weeks, 2017)

Prof. Kazufumi Ito (North Carolina State University, USA). (4 weeks 2017; 4 weeks, 2018; 4 weeks, 2019)

Prof. Keke Zhang (Exeter University, UK; 2 weeks: 2017; 2 weeks: 2018).

Dr. Yikan Liu (University of Yokyo, Japan: 4 weeks, 2018).

Prof. Patrick Ciarlet, Jr. (ENSTA, France: one week: 2018)

Prof. Bangti Jin (University of College London, UK; 3 weeks, 2017; 4 weeks, 2018; 4 weeks: 2019; 2 months: 2020; 4 months: 2021)

Prof. Iva Graham (Bath University, UK: 3 months, 2017; 3 weeks, 2018; 2 weeks, 2019)

Prof. Huoyuan Duan (Wuhan University, China: 3 weeks, 2017; 2 months, 2018)

Prof. Zhiming Chen (Chinese Academy of Sciences, China: 2 months, 2018; one week, 2019)

12. Statistics on	Research	Outputs	(Please	ensure	the	summary	statistics	below	are
consistent with	the information	tion presen	ted in ot	her part	s of	this report	.)		

	Peer-reviewed journal publications	Conference papers	Scholarly books, monographs and chapters	Patents awarded	Other research outputs (Please
No. of outputs arising directly from this	19	6			specify)
research project [or conference]					