The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme ______Joint Completion Report___

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Experimental Studies of Geometrical Properties, Vorticity Dynamics and Small-Scale Statistics of Vortex Structures in Rotating Thermal Convection

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Mainland Team
Name of Principal	Prof. Xia, Ke-Qing	Prof Zhong, Jin-Qiang
Investigator (with title)		
Post	Professor	Professor
Unit / Department /	Physics Department, The	School of Physics Science and
Institution	Chinese University of Hong	Engineering, Tongji
	Kong	University
Contact Information		
Co-investigator(s)		
(with title and		
institution)		

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval
			(must be quoted)
Project Start date	01.01.2016	01.01.2016	
Project Completion date	31.12.2019	15.11.2018	18.12.2018
Duration (in month)	48	34.5	
Deadline for Submission of Completion Report		15.11.2019	

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - *1*. To investigate the geometrical properties of vortex structures in rotating thermal convection. The number and area of the vortex structures and their distribution in the flow will be measured.
 - 2. To study the dynamics of vortices and their interactions in rotating convective turbulence. The horizontal meandering and lifetime of single vortex and the vortex-vortex interaction will be obtained

- 3. To measure the statistical properties of temperature and velocity fluctuations inside and outside the vortex structures in rotating convection. The spatial distribution of the local heat flux will be calculated to understand the main heat transport path in the system.
- 4. To investigate the energy cascade in turbulent rotating convection, including the energy dissipation rate, structure function, and the energy and entropy spectra.
- 5. To understand the mechanism of flow regime transition in rotating thermal convection based on the geometrical and dynamical features of the vortex structures.
- 5.2 Revised Objectives

Date of approval from the RGC: _____N/A _____

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

There are a number of findings made in this project. Most importantly, we find that the two-dimensional motion of vortex columns in rotating turbulent flows behave like particles. Specifically, we find that, under moderate rotation rate, the horizontal motion of vortex columns behave like Brownian particles, they initially move ballistically, and then diffusively after certain critical time. Moreover, the transition from ballistic to diffusive behaviors is direct, as predicted by Langevin, without first going through the hydrodynamic memory regime. This is the first time that the "pure Brownian" motion has been observed in a liquid system. In the spatial domain, however, the vortices exhibit organized structures, as if they are performing tethered random motion. Our results imply that vortices actually have inertia-induced memory such that their short term movement can be predicted and their motion can be well described in the framework of Brownian motions. When rotation becomes rapid, the effect of centrifugation becomes significant. In such a case, the vortices move according to their helicity. Near the bottom boundary cyclones are upwelling (warm) vortices while anticyclones are downwelling (cold) ones, and its opposite in the upper half of the cell. Our results show that when centrifugal buoyancy is present the vortices undergo radial motions, i. e. cyclones move radially inward and anticyclones outward. We show that these behaviors can be explained through a Langevin-type stochastic model. Unexpectedly, under even stronger rotation, in the centrifugation-dominant flow regime anomalous outward motion of cyclones are observed. This phenomenon is interpreted as a symmetry breaking of the vorticity field induced by the centrifugal buoyancy. Consequently the cyclones submit to the collective motion dominated by the strong anticyclones. Further studies of this anomalous vortex motion reveal that the vortices self-organize into coherent clusters, in which their velocity fluctuations exhibit scale-free correlations, with the correlation length being about 30% of the cluster length. Scale-free collective motions have been found in many natural systems consisting of large number of large number of objects, such as bird flocks and bacteria swarms. Our study provides new understanding of vortex dynamics and collective motion that are widely present in nature.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

There are a number of possible lines of research that one can develop from the wealth of information and knowledge obtained from the present project. During our study, we found that the vortices form or aggregate near the sidewall of the convection cell and their motions resemble the so-called wall mode. We plan to further explore this wall mode in the centrifugation dominant regime. Another interesting line of research worthy of pursuit is the nature of interactions among the vortices in the anomalous regime that lead to the collective their motion within a cluster. The result should shed light on not only vortex dynamics in turbulent flows, but also collective motion in active matter systems.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Convection phenomena exist ubiquitously in geophysical and astrophysical systems, such as in the core and atmosphere of planets and in star. As almost all planets and stars are rotating objects, understanding convection under rotation is therefore essential to our understanding of the many properties of planets and start. Our study reveals that vortices in rotating turbulent flows behaves like particles. Moreove, when the rotation is moderate, the motion of vortices exhibit Brownian-like behavior. When the rotation becomes strong such as the effect of centrifugal force is negligible, the motion of vortices is no longer random but exhibit features of collective motion.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The La	test Status	of Public	ations	Author(s)	Title and Journal/	Submitted	Attached	Acknowl	Accessible
Year of	Year of	Under	Under	(bold the authors	Book	to RGC	to this	edged the	from the
publication	Acceptan	Review	Preparatio	belonging to the	(with the volume,	(indicate	report	support	institution
	ce (For		n	project teams and	pages and other	the year	(Yes or	of this	al
	paper			denote the	necessary publishing	ending of	No)	Joint	repository
	accepted		(optional)	corresponding author	details specified)	the		Research	(Yes or No)
	but not			wiin an asierisk*)		progress		(Yes or	
	published					report)		No)	
)							,	
				Kai Leong	Confined				
2017				Chong, Yantao	Rayleigh-Bénard	Yes	No	Yes	
				Yang, Shi-Di	, Rotating	2017			
				Huang,	Rayleigh-Bénard				
				Jin-Qiang	, and Double				
				Zhong, Richard	Diffusive				
				J. A. M.	Convection:				
				Stevens,	A Unifying				
				Roberto	View on				
				Verzicco, Detlef	Turbulent				
				Lohse, and	Transport				
				Ke-Qing Xia*	Enhancement				
					through				
					Coherent				
					Structure				
					Manipulation				
					PHYSICAL				
					REVIEW				
					LETTERS, 119,				
					064501				

	1						
2010		Kai Leong	Effect of Prandtl	N	N	37	
2018		Chong,	number on heat	Yes	No	Yes	
		Sebastian	transport	2017			
		Wagner,	enhancement in				
		Matthias	Ravleigh-Bénard				
		Kaczorowski Ol	convection				
		Raczorowski, Or					
		ga Shishkina,	under				
		and Ke-Qing	geometrical				
		Xia*	confinement				
			PHYSICAL				
			REVIEW				
			FLUIDS 3				
			013501				
2018		Foi Wong	Contribution of				
2018		rei wallg,		Vac	No	Vac	
		Sni-Di Huang,	Surface Thermal	105	INO	105	
		and Ke-Qing	Forcing to	2017			
		Xia*	Mixing in the	2017			
			Ocean				
			Journal of				
			Geophysical				
			Research:				
			Cooong				
			Oceans				
			100 055 050				
			123, 855-863				
			https://doi.org/1				
			0.1002/2017JC0				
			13578				
2018		Yi-Chao Xie.	Flow Topology				
		Guang-Yu	Transition via	No	Yes	Yes	
		Ding and	Global				
		Vo Oing Vio*	Difurnation in				
		Ke-Qilig Ala					
			Thermany				
			Driven				
			Turbulence				
			PHYSICAL				
			REVIEW				
			LETTERS 120.				
			214501 (2018)				
2018	+ +	 Kai Leong	Multiple_resoluti				1
_010		Chong*	on schome in	No	Yes	Yes	
		Choing',		110	105	100	
		Guangyu Ding,	Inite-volume				
		Ke-Qing Xia*	code for active				
			or passive scalar				
			turbulence				
			Journal of				
			Computational				
			Physics 375,				
			1045-1058				

2019		Zi Li Lim, Kai	Quasistatic			
		Leong Chong,	magnetoconvecti	No	Yes	Yes
		Guang-Yu Ding	on: heat			
		and Ke-Qing	transport			
		Xia*	enhancement			
			and boundary			
			layer crossing			
			J. Fluid Mech.			
			(2019), vol. 870,			
			pp. 519-542.			
	2019	Kai Leong	Vortices as			
		Chong,	Brownian	No	Yes	Yes
		Jun-Qiang Shi,	Particles in			
		Guang-Yu	Turbulent Flows			
		Ding,				
		Shan-Shan				
		Ding,				
		Hao-Yuan Lu,	Science			
		Jin-Qiang	Advances			
		Zhong* and	(under review)			
		Ke-Qing Xia*				
	2019	Shan-Shan	Scale-free			
		Ding,	collective	No	Yes	Yes
		Kai Leong	motion of			
		Chong,	vortices in			
		Jun-Qiang Shi,	rotating			
		Guang-Yu	turbulent flows			
		Ding,				
		Hao-Yuan Lu,				
		Ke-Qing Xia*	Physical Review			
		and Jin-Qiang	Letters			
		Zhong*	(under review)			

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted to	Attached	Acknowledged	Accessible
Place			RGC (indicate	to this	the support of	from the
			the year ending	report	this Joint	institutiona
			of the relevant	(Yes or No)	Research	l repository
			progress		Scheme	(Yes or No)
			report)		(Yes or No)	
	Magnetoconvecti	70th Annual Meeting of				
Nov. 2017/	on and	the APS Division of	Yes	No	Yes	
Denver	universality of	Fluid Dynamics (APS	2017			
	heat transport	 American Physical 				
	enhancement	Society)				

	Passive moist	70 th Annual Meeting of	•			
Nov. 2017/	transfer in	the APS Division of	Yes	No	Yes	
Denver	Rayleigh-Bénard	Fluid Dynamics (APS	2017			
	convection	– American Physical				
		Society)				
May 2018	CONTRIBUTIO	INTERNATIONAL	no	Yes	Yes	
Enschede	N OF SURFACE	CONFERENCE ON				
	THERMAL	RAYLEIGH				
	FORCING TO	BÉNARD				
	MIXING IN THE	TURBULENCE				
	OCEAN					
May 2018	AN	INTERNATIONAL	no	Yes	Yes	
Enschede	EXPERIMENTA	CONFERENCE ON				
	L STUDY OF	RAYLEIGH				
	INTERNAL	BÉNARD				
	WAVE FIELD	TURBULENCE				
	IN A STABLY					
	THERMAL					
	STRATIFIED					
	FLUID LAYER					
May 2018	CLUSTER	INTERNATIONAL	no	Yes	Yes	
Enschede	FORMATION	CONFERENCE ON				
	AND	RAYLEIGH				
	BROWNIAN	BÉNARD				
	MOTION OF	TURBULENCE				
	COLUMAR					
	VORTICES IN					
	ROTATING					
	RAYLEIGH-BÉ					
	NARD					
	CONVECTION					
May 2018	TURBULENT	INTERNATIONAL	no	Yes	Yes	
Enschede	RAYLEIGH-BÉ	CONFERENCE ON				
	NARD	RAYLEIGH				
	CONVECTION	BÉNARD				
	IN A VERTICAL	TURBULENCE				
	ANNULUS					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for Date of registration		Date of thesis submission/
Wang Fei	PhD	2011	2016
Chong Kai Leong	PhD	2014	2018
Lim Zi Li	M.Phil.	2016	2018
Zhang Lu	PhD	2012	2019

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

Mr. Kai-Leong Chong has been awarded the Croucher Postdoctoral Fellowship (2014-2017). His PhD thesis work was support by the present project. Part of the results was published in (Publication #1,2,5,6,7,8).

The Hong Kong PI and the Mainland PI have established collaborations with the Physics of Fluids group of Professor Detlef Lohse of the University of Twente in the Netherlands. The Hong Kong PI has established collaboration with the group of Professor Olga Shishikina at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany. These collaborations have led two publications with the respective groups