The Research Grants Council of Hong Kong NSFC/RGC Joint Research Scheme Joint Completion Report

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Visible-light optomechanical integrated circuits based on III-nitride semiconductors

	Hong Kong Team	Mainland Team
Name of Principal	Prof. SUN Xiankai	Prof. WANG Lai
Investigator (with title)		
Post	Associate Professor*	Associate Professor
Unit / Department /	Department of Electronic	Department of Electronic
Institution	Engineering / The Chinese	Engineering / Tsinghua
	University of Hong Kong	University
Contact Information	Email: xksun@cuhk.edu.hk	Email: wanglai@tsinghua.edu.cn
	Phone: (852) 3943 8264	Phone: (86) 10 62798240
Co-investigator(s)	Prof. TSANG Hon Ki,	Prof. HAO Zhibiao,
(with title and	The Chinese University of	Tsinghua University;
institution)	Hong Kong	Prof. LUO Yi,
		Tsinghua University

2. Investigator(s) and Academic Department/Units Involved

*Promoted from Assistant Professor to Associate Professor with effect from 1 August 2020.

3. **Project Duration**

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	1 January 2016		
Project Completion date	31 December 2019		
Duration (in month)	48		
Deadline for Submission of Completion Report	31 December 2020		

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To design and fabricate integrated photonic circuits for high-efficiency fiber-to-chip coupling and low-loss on-chip routing at visible wavelengths.
 - 2. To develop III-nitride nano-optomechanical resonators operating at visible wavelengths, and demonstrate their significantly enhanced performance compared with those fabricated in silicon.
 - 3. To design and fabricate on-chip integrated semiconductor lasers at visible wavelengths based on III-nitrides, and further demonstrate their seamless integration with nano-optomechanical systems on the same platform.

- 4. To conduct both theoretical and experimental investigation on the coupling mechanisms of visible-light photons and high-frequency vibrational phonons, and further to explore new physics and applications that result from such coupling mechanisms in wide-bandgap semiconductors.
- 5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change:	
e	

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

The research outcome in the engineering aspect is shown as follows:

- (1) Visible-light integrated photonic circuits: We designed and fabricated integrated photonic circuits for high-efficiency fiber-to-chip coupling and low-loss on-chip routing at visible wavelengths. More specifically, we have obtained fiber-to-chip grating by using on-chip grating couplers, which has a coupling efficiency of 12.7% per coupler at the center wavelength of 771.8 nm, with a 3-dB bandwidth of ~10 nm. The minimal propagation loss is 2 dB/cm measured from a straight waveguide [J1].
- (2) Visible-light integrated photonic components: We also fabricated and characterized the microresonators, directional couplers, Mach–Zehnder interferometers, and mode multiplexers [J1]. In addition, we have also investigated and optimized the designs of visible-light absorbers for different applications. The optimized absorber can achieve perfect optical absorption either with an ultrabroad bandwidth covering 300–850 nm [J7, C3] or with an ultranarrow bandwidth of only 0.33 nm centered at 773 nm [J11, C8].
- (3) Visible-light optomechanical resonators: We developed a gallium nitride optomechanical crystal resonator. It has a size of $3.83 \times 0.17 \times 0.13 \,\mu\text{m}^3$ and a mechanical modal mass of 22.83 fg, possesses an optical mode resonating at the wavelength of 393.03 nm and the fundamental mechanical mode vibrating at 14.97 GHz. The radiation-limited optical Q factor, mechanical Q factor, and optomechanical coupling rate are 2.26×10^7 , 1.30×10^4 , and $1.26 \,\text{MHz}$, respectively. Compared with silicon optomechanical crystal resonators, the fundamental mechanical modal frequency is about 3 times higher [J15, C9].
- (4) Visible-light optomechanical integrated circuits with acousto-optic modulators: We also fabricated visible-light optomechanical resonators, with an optical quality factor of 4×10^4 , which were acousto-optically modulated by surface acoustic modes with the modulation frequency up to 2.44 GHz [J3, C2].
- (5) Etchless mechanical integrated circuits on gallium nitride: We invented a new type of mechanical waveguide structure which does not require etching of the substrate material. We also fabricated and measured mechanical (phononic) integrated circuits on gallium nitride with an etchless method, which can substantially simplify fabrication processes and enhance device yield [C1].
- (6) Visible-light semiconductor lasers with optomechanics: We fabricated electrically pumped InGaN Fabry-Perot semiconductor lasers emitting at a wavelength of ~428 nm on an optomechanical integration compatible platform. We investigated cavity optomechanics in a semiconductor laser, where the inverted carriers interact collectively with the photons and phonons via the carrier relaxation oscillation and optical gain effects [J10].

The research outcome in the science aspect is shown as follows:

(7) Topological physics in nanomechanical array: We fabricated two-dimensional arrays of nanomechanical nitride membranes on a chip and used optomechanical coupling to map the intensity of the elastic waves in the arrays. We experimentally discovered a series of new topological phenomena, such as dual-band integrated valley Hall nanomechanical topological insulators [J4], adiabatic transition between distinct topological edge states [J5], backscattering-immune chiral edge states [J6].

- (8) Optomechanical control and manipulation of phonons in nanomechanical array: We exploited particle-nonconserving optomechanical interactions to engineer not only the band structure but also the dissipation of acoustic waves. We found a topologically protected edge state for phonons that can be parametrically amplified, which can be exploited for topologically protected acoustic wave amplification [J8, C5].
- (9) Parity-time-symmetric optomechanical array: We theoretically investigated optical control of parity-time-symmetric mechanical array with gain/loss provided by the cavity optomechanical effect. We found the property of unidirectional reflection in these systems, which may pave the way for the study of topological acoustics and phononic signal processing [J12, C6].
- (10) Parity-time-symmetric lasers for optomechanics: We theoretically studied a new type of semiconductor lasers where both the real and imaginary parts of the refractive index are modulated along the radial direction [J14]. We analyzed their modal properties, finding that they can achieve high modal discrimination [J13, C7] and obtain giantly enhanced sensitivity in rotation sensing, which can be used for optomechanical sensors [J9, C4].

Potential for further development of the research and the proposed course of action *(maximum half a page)*

In this project, we have developed optomechanical integrated circuits and devices operating in the visible wavelength range. Further development of the research can include sensing applications:

- (1) Optomechanical sensing: the sensing mechanism is based on a direct relation between the shift of the mechanical resonant frequency and the variation of a mechanical quantity, such as mass, displacement, or acceleration. An on-chip implementation of optomechanical sensing will lead to enhanced sensitivity.
- (2) Microfluidic biosensing: operation in the visible wavelength enables simultaneous photonic and mechanical detection in water, because the electromagnetic absorption by water is minimum at the wavelength of ~460 nm, which is 4 orders of magnitude lower than that at the wavelength of 1550 nm. This ultralow optical absorption enables high-quality-factor photonic cavities for microfluidic biosensing.

In addition to the above sensing applications, further development of the research can also include photonic crystals, nonlinear photonics, and quantum photonics. For example, the advantages of a wideband transparency window and $\chi^{(2)}$ nonlinearity of gallium nitride enable a photonic integrated circuit with functions of optical frequency synthesis through the sum- or difference-frequency generation. Operated reversely, such a photonic circuit can be used to generate entangled photon pairs or single photons on a chip by spontaneous parametric down-conversion, which is particularly useful for quantum information processing.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Mechanics studies the behavior of structures when subjected to forces or displacements. With the development of nanotechnologies, people have gained the capabilities to create and control mechanical structures at the nanoscale for precision measurements of force, mass, and displacement. Combining the advantages of nanophotonics and nanoelectromechanics, optomechanical integrated circuits were developed to integrate photonic components and nanomechanical resonators on a single chip for strong optomechanical and electromechanical

coupling. However, the operational light was usually in the infrared band (wavelength ~1550 nm), which limits device miniaturization and application in areas like optical imaging, biosensing, and quantum information processing.

In this project, we broke the above limitations by developing optomechanical integrated circuits and devices operating at visible wavelengths (400–780 nm). More specifically, we have experimentally realized visible-light optomechanical integrated circuits and devices on a chip, with low-loss interfaces to optical fibers. Such visible-light optomechanical integrated circuits are compatible with both passive and active integrated photonics in the visible wavelength range, including the demonstrated integrated photonic components, optomechanical resonators, and semiconductor lasers. These visible-light optomechanical integrated circuits and devices feature miniaturized device sizes and enhanced functionalities for various on-chip applications such as communication, sensing, and signal processing.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The L	atest Status o	of Public	ations	Author(s)	Title and Journal/	Submitted	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Book	to RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	(with the volume,	(indicate	report (Yes	of this Joint	institutional
•	(For paper			belonging to	pages and other	the year	or No)	Research	repository
	accepted		(optional)	the project	necessary	ending of		Scheme	(Yes or No)
	but not yet		. 1	teams and	publishing details	the relevant	L	(Yes or No)	
	published)			denote the	specified)	progress			
	. ,			corresponding		report)			
				author with an					
				asterisk*)					
		Y		Yue Yu, Zejie	"Ultralow-loss		No	Yes	No
				Yu, Lai	etchless lithium				
				Wang, and	niobate integrated				
				Xiankai Sun*	photonics at				
					near-visible				
					wavelengths"				
		Y		Yang Liu, Lai	"Demonstration		No	Yes	No
				Wang*,	of				
				Yuantao	n-Ga2O3/p-GaN				
				Zhang*, Xin	diode by				
				Dong,	wet-etching				
				Xiankai Sun,	lift-off and				
				Zhibiao Hao,	transfer-print				
				Yi Luo,	technique"				
				Changzheng					
				Sun, Yanjun					
				Han, Bing					
				Xiong, Jian					
				Wang, and					
				Hongtao Li					
		Y		Yue Yu, Lai	"Demonstration		No	Yes	No
				Wang, and	of on-chip				
				Xiankai Sun*	gigahertz				
					acousto-optic				
					modulation at				
					near-visible				
					wavelengths"				

-				,			
	2020		Jingwen Ma,	(J4)	No	Yes	No
			Xiang Xi, and	"Experimental			
			Xiankai Sun*				
				dual-band			
				nanoelectromecha			
				nical valley-Hall			
				topological			
				metamaterials,"			
				Advanced			
				Materials			
		Y	Jingwen Ma,	"Nanomechanical	No	Yes	No
			Xiang Xi,	topological			
			Yuan Li, and	insulators with an			
			Xiankai Sun*				
				degree of			
				freedom"			
	2020		Xiang Xi,	(J6) "Observation	No	Yes	No
			Jingwen Ma,	of chiral edge			
			Shuai Wan,	states in gapped			
			Chun-Hua	nanomechanical			
			Dong, and	graphene," Scienc			
			Xiankai Sun*	e Advances			
2020					Yes	Yes	Yes
			Yu, and	broadband			
			Xiankai Sun*	visible-light			
				absorbers with			
				polarization and			
				incident angle			
				insensitivity," IE			
				EE Photonics			
				Journal 12 (6):			
				2200807, Dec.			
1				2020			
				2020			
2020			Jingwen Ma,	(J8) "Optically	Yes	Yes	Yes
2020			Ziyao Feng,	(J8) "Optically controlled	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically	Yes	Yes	Yes
2020			Ziyao Feng,	(J8) "Optically controlled topologically protected acoustic	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification,"	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410,	Yes	Yes	Yes
			Ziyao Feng, Yuan Li, and Xiankai Sun *	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020			
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020 (J9) "Giant	Yes	Yes	Yes
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020 (J9) "Giant enhancement of rotation sensing with			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5):			
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May			
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun*	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020	Yes	Yes	Yes
			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi,	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 			
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma,	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma, and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020(J10) "Carrier-mediated cavity	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma,	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma, and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020(J10) "Carrier-mediated cavity 	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma, and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020(J10) "Carrier-mediated cavity 	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma, and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020(J10) "Carrier-mediated cavity 	Yes	Yes	Yes
2020			Ziyao Feng, Yuan Li, and Xiankai Sun* Ziyao Feng and Xiankai Sun* Xiang Xi, Jingwen Ma, and Xiankai	(J8) "Optically controlled topologically protected acoustic wave amplification," [invited] IEEE Journal of Selected Topics in Quantum Electronics 26 (5): 7600410, Sep./Oct. 2020(J9) "Giant enhancement of rotation sensing with PT-symmetric circular Bragg lasers," Physical Review Applied 13 (5): 054078, May 2020(J10) "Carrier-mediated cavity 	Yes	Yes	Yes

2018	Aosong Feng,	(J11)		Yes	Yes	Yes
2010	Zejie Yu, and	(J11) "Ultranarrow-ban		1 85	res	1 88
	Xiankai Sun*					
		absorbers for				
		sensing and				
		modulation," Opti				
		cs Express 26				
		(22):				
		28197-28205,				
		Oct. 2018				
2018	Ziyao Feng,	(J12)		Yes	Yes	Yes
-010	Jingwen Ma,	"Parity-time-sym		100	100	100
	and Xiankai	metric				
	Sun*	mechanical				
	~	systems by the				
		cavity				
		optomechanical				
		effect," Optics				
		Letters 43 (17):				
		4088-4091, Sep.				
		2018				
2018	Ziyao Feng,	(J13) "Circular		Yes	Yes	Yes
	Jingwen Ma,	Bragg lasers with				
	Zejie Yu, and	radial PT				
	Xiankai Sun*	symmetry: design				
		and analysis with				
		a coupled-mode				
		approach," Photo				
		nics Research 6				
		(5): A38-A42,				
		May 2018				
2016	Jiahua Gu,		2017-12-31	Yes	Yes	Yes
	Xiang Xi,	"Parity-time-sym				
	Jingwen Ma,	metric circular				
	Zejie Yu, and	Bragg lasers: a				
	Xiankai Sun*	proposal and				
		analysis," Scientif				
		ic Reports 6:				
2016		37688, Nov. 2016	0017 10 01	\$7	37	37
2016	Wen Zhou,	(J15) "Ultraviolet	2017-12-31	Yes	Yes	Yes
	Zejie Yu,	optomechanical				
	Jingwen Ma,	crystal cavities				
		with ultrasmall				
	Hon Ki Tsang, and	modal mass and high				
	Xiankai Sun*					
	Alankai Sun*					
		coupling rate," Scientific				
		Reports 6: 37134,				
		Nov. 2016				
		INOV. 2010				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the			institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			

24 0001	a b c c c c c c c c c c		T	N T		
May 2021,	Ziyao Feng, Yang Liu,	CLEO 2021		No	Yes	No
	Lai Wang, and					
USA	Xiankai Sun*,					
	"Phononic integrated					
	circuitry with an					
	etchless fabrication					
	process" (submitted)					
May 2021,	Yue Yu, Lai Wang,	CLEO 2021		No	Yes	No
	and Xiankai Sun*,					
USA	"Demonstration of					
	on-chip gigahertz					
	acousto-optic					
	modulation at					
	near-visible					
	wavelengths"					
M 2021	(submitted)	CL EQ 2021		NT	37	N
May 2021,	Yue Yu, Zejie Yu, and	CLEU 2021		No	Yes	No
San Jose, CA,			1			
USA	"Nonmetallic broadband		1			
	visible-light absorbers		1			
	with polarization and					
	incident angle					
	insensitivity"					
	(submitted)					
Mar. 2021,	(C4) Ziyao Feng and	SPIE Photonics		Yes	Yes	No
San	Xiankai Sun*,	West 2021		103	105	110
Francisco,	"Rotation sensing with					
CA, USA	PT-symmetric circular					
	Bragg lasers" [invited]					
	(accepted)					
May 2020,	(C5) Jingwen Ma,	CLEO 2020		Yes	Yes	No
	Ziyao Feng, Yuan Li,					
USA	and Xiankai Sun*,					
	"Topologically					
	protected acoustic					
	wave amplification in					
	an optomechanical					
	array"					
Sep. 2019,	(C6) Ziyao Feng,	Frontiers in Optics		Yes	Yes	No
Washington,	Jingwen Ma, and	2019				
DC, USA	Xiankai Sun*,		1			
	"Parity-time-symmetri		1			
	c mechanical array					
	with the cavity		1			
	optomechanical		1			
a a a a a a a a a a	effect"	-				
Sep. 2019,	(C7) Ziyao Feng,	Frontiers in Optics	1	Yes	Yes	No
Washington,	Jingwen Ma, Zejie	2019				
DC, USA	Yu, and Xiankai					
	Sun*,		1			
	"Parity-time-symmetri		1			
	c circular Bragg					
	lasers: enhanced					
	modal discrimination		1			
	between azimuthal					
	modes"					

May 2019,	(C8) Aosong Feng,	CLEO 2019		Yes	Yes	No
San Jose, CA,	Zejie Yu, and Xiankai					
USA	Sun*,					
	"Ultranarrow-band					
	metagrating absorbers					
	for sensing and					
	modulation"					
Jan. 2018,	(C9) Zejie Yu, Wen	SPIE Photonics	2017-12-31	Yes	Yes	Yes
San	Zhou, Hon Ki Tsang,	West 2018				
Francisco,	and Xiankai Sun*,					
CA, USA	"Recent progress in					
	nano-optomechanical					
	devices at microwave					
	frequencies" [invited]					

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
		_	submission/
			graduation
YU Zejie	Ph.D.	1 August 2015	31 July 2019
XI Xiang*	Ph.D.	1 August 2015	31 July 2021
MA Jingwen*	Ph.D.	1 August 2016	31 July 2021
YU Yue*	Ph.D.	1 August 2017	31 July 2021
FENG Ziyao*	Ph.D.	1 August 2017	31 July 2021

*These students have been trained under this project. They published journal and/or conference papers for this project. However, they have not submitted the Ph.D. thesis yet. As a result, the title page of the thesis is not available by the time when this completion report is submitted.

- **11. Other impact** (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)
 - 1. In this project, we collaborated with Prof. Chun-Hua Dong's group at University of Science and Technology of China, Hefei, Anhui, China. The collaborated paper is [J6] in Sec. 8.
 - 2. In addition to those list in Sec. 9, we also presented an invited conference talk with no conference paper/abstract:

Xiankai Sun*, "Photonics Meets Mechanics in the Nanoworld," Asia Communications and Photonics Conference Workshop 9: On-chip Light-matter Interaction: Physics and Devices, Wuhan, China, Nov. 2016

12. Statistics on Research Outputs (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	journal	papers	monographs and		outputs
	publications		chapters		(Please specify)
No. of outputs	15	9	0	0	1 invited
arising directly	(including	(including			conference talk
from this research	submitted and	submitted and			
project [or	accepted)	accepted)			
conference]	_				