

(Please attach a copy of the completion report submitted to the NSFC by the Mainland researcher)

Part A: The Project and Investigator(s)

1. Project Title

Theoretical and Experimental Study of Quantum Computing and Quantum Simulation with Electron and Nuclear Spins in Solids

用固體中電子及核自旋進行量子計算及量子仿真之理論與實驗研究

	Hong Kong Team	Mainland Team
Name of Principal	LIU, Renbao, Prof.	DU, Jiangfeng, Prof.
Investigator (with title)	劉仁保教授	杜江峰教授
Post	Professor 教授	Professor 教授
Unit / Department /	Department of Physics, The	Department of Modern
Institution	Chinese University of Hong	Physics, University of Science
	Kong	& Technology of China
	香港中文大學物理系	中國科技大學 現代物理系
Co-investigator(s)	LIN, Haiqing, Prof.	PENG, Xinhua, Prof.
(with title)	林海青教授	彭新華教授

2. Investigator(s) and Academic Department/Units Involved

3. Project Duration

	Original	Revised	Date of RGC/
			Institution Approval
			(must be quoted)
Project Start date	01 Jan 2012		
Project Completion date	31 Dec 2014		
Duration (in month)	36 months		
Deadline for submission of	31 Dec 2015		
Joint Completion Report			

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - Design and demonstration of one- and two-qubit quantum gates of electron and nuclear spins in solids. The theoretical research will provide schemes for identifying and characterizing a coupled electron-nuclear spin system and design controlling schemes, including timing of pulse sequences for dynamical decoupling control and pulse shaping for non-Abelian geometrical control. The experimental research will characterize the physical systems and implement the control schemes. In this stage,

the experimental control techniques, such as pulse shaping and multi-channel pulse sequences, will be improved;

- 2. Design and demonstration of small quantum algorithms and simulations of quantum phase transitions using a few spin qubits in solids. The theoretical research will develop schemes to analyze a multi-spin systems such as a center electron spin coupled to several nuclear spins and therefore design control gates of the multi-qubit systems (e.g., by applying pulses flipping the center electron spin). The theoretical team will also apply the quantum information approach to many-body physics in few-qubit systems. The experimental research will demonstrate the control schemes and small quantum algorithms such as multi-qubit Deutsch-Jozsa algorithm and quantum error correction and test the quantum information approaches to quantum phase transitions and quantum simulation;
- 3. Design of scalable architectures of quantum computers based on solid-state spin systems. The theoretical research will design the architecture and run numerical simulations of the design. The experimental team will test the key elements of the architecture.
- 5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

- We designed and implemented noise-resilient quantum gates on electron and nuclear spins in diamond using dynamical decoupling. We put forward a general scheme to design quantum gates resilient to environmental noises up to arbitrary order of precision. The scheme is based on dynamical decoupling. The designed quantum gates include Phase gates, C-NOT gates, NOT gates, etc. We experimentally demonstrated a high-fidelity (>90%) C-NOT two-qubit gate on a nitrogen-vacancy center electron spin and a 13C nuclear spin in diamond. The gate by design is demonstrated robust against decoherence (coherence time extended by more than 30-fold). Part of the result is published in *Nature Communications* [4, 2254 (2013)].
- 2. We developed methods to detect ¹³C nuclear spin pairs in diamond by optically detected magnetic resonance of a nitrogen-vacancy center spin under multi-pulse dynamical decoupling control. The spatial configuration and structure of the pair are identified with atomic scale resolution, by comparing the experimental data and numerical simulations. The paper reporting this result is published in *Nature Physics* [10, 21 (2014)].
- 3. We have been carried out study of phase transitions and more generally detection of many-body physics using central spin decoherence. Currently in experiments we have conducted simulation of the many-body system using liquid-state nuclear magnetic resonance. In theory, we are studying the simulation of many-body physics using multiple spins in diamond. We observed Lee-Yang zeros (which were discovered in theory by T. D. Lee and C. N. Yang in 1952) for the first time. The results are published in *Physical Review Letters* [114, 010601 (2015)].

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Based on the studies in this project, we find that it is promising to use dynamical decoupling to tune the strength of quantum measurement of a single nuclear spin weakly coupled to a nitrogen-vacancy center and realize the single-shot quantum measurement, which is essential to quantum computing. This, if realized experimentally, would great extend the number of nuclear spin qubits and may help achieve fault-tolerant coding. We will pursue further in experiments along this direction.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Physical implementation of scalable quantum computers is the central topic of current research of quantum information. Quantum simulation of interacting many-body systems has been the first motivation and is still a most challenging task for research of quantum computing. Spins in solids are a most promising candidate system for quantum computing. The key issues are how to protect quantum coherence and implement high-fidelity quantum gates in complex solid-state environments and how to scale up the system and control design. This project will tackle these important problems. This project targets at physical implementation of few-qubit quantum computing and quantum simulation using electron and nuclear spins in solids. In this project, we have put forward schemes in theory and demonstrated the implementation in experiments of controlling and measuring electron and nuclear spin qubits in a fault-tolerant manner, which tolerates the decoherence. High fidelity of quantum gates has been achieved. We also realized characterization of a cluster of nuclear spin gubits that are weakly coupled to a central electron spin qubits. This project will pave the way for scalable quantum computing in solid-state spin systems and may also rejuvenate high-precision magnetic resonance spectroscopy.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (*Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s).* All listed publications must acknowledge RGC's *funding support by quoting the specific grant reference.*)

The	e Latest Status	of Publica	tions	Author(s)	Title and	Submitted to	Attached	Acknowledge	Accessible
Year of	Year of	Under	Under	(bold the	Journal/	RGC	to this	d the support	from the
publication	Acceptance	Review	Preparation	authors	Book	(indicate the	report (Yes	of this Joint	institutional
_	(For paper		_	belonging to	(with the	year ending	or No)	Research	repository
	accepted but		(optional)	the project	volume,	of the		Scheme	(Yes or No)
	not yet			teams and	pages and	relevant		(Yes or No)	
	published)			denote the	other	progress			
				corresponding	necessary	report)			
				author with an	publishing				
				asterisk*)	details				
					specified)				

				1				0
2013			Gang-Qin	Noise-resi	Yes	Yes	Yes	Yes
			Liu, Hoi	lient	30 Jun			
			Chun Po,	quantum	2013			
			Jiangfeng	evolution				
			Du,	steered by				
			Ren-Bao	dynamical				
			Liu*, and	decouplin				
			Xin-Yu	g, Nature				
			Pan*	Commun				
				ications				
				4:2254				
				(2013).				
				DOI:				
				10.1038/n				
				comms32				
				54				
2014			Fazhan Shi.	Sensing	No	Yes	Yes	No
			Xi Kong.	and				
			Pengfei	atomic-sc				
			Wang, Fei	ale				
			Kong, Nan	structure				
			Zhao.	analysis				
			Ren-Bao	of single				
			Lin.	nuclear-s				
			Jiangfeng	nin				
			Du*	clusters in				
				diamond.				
				Nature				
				Physics				
				10.21				
				(2014)				
				doi: 10.10				
				$\frac{38}{nphys2}$				
				814				
2015			Xinhua	Experime	No	Yes	No	No
			Peng*. Hui	ntal				
			Zhou.	Observati				
			Bo-Bo Wei.	on of				
			Jiangvu	Lee-Yang				
			Cui.	Zeros.				
			Jiangfeng	Physical				
			Du*.	Review				
			Ren-Bao	Letters				
			Lin*	114.				
				010601				
				(2015)				
1	1	1						

	-							
2013			Chang S.	Suppressi	No	Yes	Yes	No
			Shin,	on of			ļ	
			Claudia E.	electron			ļ	
			Avalos,	spin			ļ	
			Mark C.	decoheren			ļ	
			Butler,	ce of the			ļ	
			Hai-Jing	diamond			ļ	
			Wang, Scott	NV center			ļ	
			J. Seltzer,	by a				
			Ren-Bao	transverse			ļ	
			Liu,	magnetic			ļ	
			Alexander	field.			ļ	
			Pines, and	Physical			ļ	
			Vikram S.	Review B			ļ	
			Bajaj*	88,				
				161412(R			ļ	
) (2013)				
				(Editor's			ļ	
				suggestio			ļ	
				n).				
2014			Chang S.	Optically	No	Yes	Yes	No
			Shin, Mark	detected			ļ	
			C. Butler,	nuclear			ļ	
			Hai-Jing	quadrupol				
			Wang,	ar				
			Claudia E.	interactio			ļ	
			Avalos,	n of N14				
			Scott J.	in				
			Seltzer,	nitrogen-v			ļ	
			Ren-Bao	acancy				
			Liu,	centers in				
			Alexander	diamond.			ļ	
			Pines, and	Physical			ļ	
			Vikram S.	Review B			ļ	
			Bajaj*	89,			ļ	
			0.0	205202			ļ	
				(2014).				
				http://jour				
				nals.aps.o				
				rg/prb/abs				
				tract/10.1				
				103/Phys				
				RevB.89.				
				205202				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this Joint	institutional
			year ending	(Yes or No)	Research	repository
			of the		Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress report)			
August 2014	Preserving	2014 Workshop on	No	Yes	Yes	No
Cambridge.	quantum	Principles and				
UK	coherence of	Applications Of				
-	spins in the	Control to Ouantum				
	presence of	Systems				
	noises					
Aug 2014	Coupling of an	2014 Workshop on	No	Yes	Yes	No
Brisbane,	ensemble of	Quantum Information				
Australia	spins in	using NV centres in				
	diamond to a	Diamond (QDiamond				
	cavity for	14)				
	solid-state					
	superradiant					
	maser at room					
	temperature					
July/2013	Quantum	The 12th Asia-Pacific	Yes	Yes	Yes	No
Chiba, Japan	Information	Physics Conference	30 Jun			
	Processing with		2013			
00/2012	Diamond		NT	X 7	X7	NT
09/2013 Kwata	Decoherence of	JSAP-MRS Joint	NO	Yes	Yes	NO
Kyolo,	introgen-vacanc	Symposia				
Japan	diamond					
08/2013	Exploring and	Windsor 2013 PPCO	No	Yes	Yes	No
Berkshire	exploiting the	Workshop on	110	105	105	110
UK	quantumness of	Dynamics of Complex				
	nuclear spin	Quantum Systems				
	baths					
Dec 2013	Dynamical	Asia-Pacific	No	Yes	Yes	No
Seoul,	decoupling for	Conference and				
Korea	decoherence	Workshop on				
	control and	Quantum Information				
	noise-resilient	Science 2013				
	quantum gates					
Jul, 2013	Central Spin	The 19th National	No	Yes	Yes	No
Weihai,	Decoherence:	Semiconductor				
Shandong,	Fundamentals	Physics Conference				
China	and	(Plenary Talk)				
	Applications					

10. Student(S) trained (<i>Trease anach a copy of the title page of the thesi</i>

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation
CHEN, Dongqing	PhD	Aug 2011	Jul 2015

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

We developed collaboration with Professor Xinyu Pan's group in Institute of Physics, Chinese Academy of Sciences and Professor A. Pines's group in University of California, Berkeley.

Ren-Bao Liu was awarded the Huang Kun Prize 2013 (Chinese Physical Society)