

|                            |
|----------------------------|
| RGC Ref. No.:              |
| UGC/FDS14/P03/20           |
| (please insert ref. above) |

**RESEARCH GRANTS COUNCIL  
COMPETITIVE RESEARCH FUNDING SCHEMES FOR  
THE LOCAL SELF-FINANCING DEGREE SECTOR**

**FACULTY DEVELOPMENT SCHEME (FDS)**

**Completion Report**  
(for completed projects only)

**Submission Deadlines:** 1. Auditor's report with unspent balance, if any: within **six** months of the approved project completion date.  
2. Completion report: within **12** months of the approved project completion date.

**Part A: The Project and Investigator(s)**

**1. Project Title**

Low-rank Matrix Optimization via Nonconvex Regularization with Applications

---



---

**2. Investigator(s) and Academic Department(s) / Unit(s) Involved**

| Research Team          | Name / Post                       | Unit / Department / Institution                                                             |
|------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
| Principal Investigator | YU Kwok-wai / Associate Professor | Department of Mathematics, Statistics and Insurance / The Hang Seng University of Hong Kong |
| Co-Investigator(s)     | YANG Xiao Qi / Professor          | Department of Applied Mathematics / The Hong Kong Polytechnic University                    |
| Co-Investigator(s)     | CHOY Siu Kai / Professor          | Department of Mathematics, Statistics and Insurance / The Hang Seng University of Hong Kong |

**3. Project Duration**

|                                              | Original     | Revised          | Date of RGC /<br>Institution Approval<br>(must be quoted) |
|----------------------------------------------|--------------|------------------|-----------------------------------------------------------|
| Project Start Date                           | 1 July 2021  |                  |                                                           |
| Project Completion Date                      | 30 June 2023 | 31 December 2023 | 22 November 2022                                          |
| Duration (in month)                          | 24 months    | 30 months        | 22 November 2022                                          |
| Deadline for Submission of Completion Report | 30 June 2024 | 31 December 2024 | 22 November 2022                                          |

4.4 Please attach photo(s) of acknowledgement of RGC-funded facilities / equipment.  
NA

## **Part B: The Final Report**

### **5. Project Objectives**

#### 5.1 Objectives as per original application

1. To investigate exact recovery property and the recovery bounds of the nonconvex  $S_p$  regularization for low-rank matrix optimization in terms of model error, absolute deviation and  $\ell_2$  consistency under the restricted eigenvalue condition, and to derive the second-order growth property of the  $S_p$  regularized function at local minima.
2. To propose a proximal gradient method with continuation technique (PGMC) to solve the  $S_p$  regularization problem and investigate the convergence theory of the algorithms to the ground true low-rank solution under a weak regularity condition.
3. To conduct numerical experiments to show the numerical capability of the PGMC on solving the  $S_p$  regularization problem and compare with several state-of-the-art algorithms for low-rank matrix optimization. To apply our  $S_p$  regularization model and numerical algorithm to complete scRNA-seq data and use the enhanced data to carry out downstream analyses including the clustering of cell population, cell type determination and gene regulatory network inference.

#### 5.2 Revised objectives

Date of approval from the RGC: NA

Reasons for the change: NA

#### 5.3 Realisation of the objectives

*(Maximum 1 page; please state how and to what extent the project objectives have been achieved; give reasons for under-achievements and outline attempts to overcome problems, if any)*

We have addressed three key objectives in this project.

The first objective was to investigate exact recovery property and the recovery bounds of the nonconvex  $S_p$  regularization for low-rank matrix optimization, focusing on model error, absolute deviation and  $\ell_2$  consistency under the restricted eigenvalue condition. To achieve this, we explored various nonconvex lower-order regularization methods for solving low-rank matrix optimization problems and extended the concept of  $\ell_p$  norm to our proposed regularization method. Additionally, we conducted a theoretical study of the

$S_p$  regularization problem. By assuming the restricted eigenvalue condition (REC), we examined the exact recovery property and recovery bound of the regularization problem.

For the second objective, we proposed a proximal gradient method with continuation technique (PGMC) for solving the  $S_p$  regularization problem. The primary computational effort of the PGMC involves the proximal optimization subproblem, which has a closed-form solution for certain values of  $p$  and can be efficiently solved using Newton's method in more general cases. To fulfill this objective, we reviewed existing convergence theorems and refined them to clearly state that the PGMC converges at a linear rate toward an approximation of the ground true solution, contingent upon the additional REC assumption. We also investigated the convergence theory of our algorithms to the ground true low-rank solution under a weak regularity condition.

Finally, for the third objective, we conducted numerical experiments to demonstrate the effectiveness of the PGMC in solving the  $S_p$  regularization problem, comparing it with several state-of-the-art algorithms for low-rank matrix optimization. To achieve this, we generated random simulation data using standard process of low-rank matrix optimization and applied various advanced algorithms to analyze this data. Our numerical experiments validated the convergence results and rates of the PGMC toward the ground true low-rank matrix, highlighting the robust low-rank promoting capability of the  $S_p$  regularization through phase diagram studies. Furthermore, we applied our proposed  $S_p$  regularization model and numerical algorithm to impute single-cell RNA sequencing (scRNA-seq) data, utilizing the enhanced data for downstream analyses. These analyses not only assessed the accuracy of the imputed gene expression profile but also provided significant biological insights.

#### 5.4 Summary of objectives addressed to date

| Objectives<br>(as per 5.1/5.2 above)                                                                                                                                                                                                                                                                                                                       | Addressed<br>(please tick) | Percentage Achieved<br>(please estimate) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|
| 1. To investigate exact recovery property and the recovery bounds of the nonconvex $S_p$ regularization for low-rank matrix optimization in terms of model error, absolute deviation and $\ell_2$ consistency under the restricted eigenvalue condition, and to derive the second-order growth property of the $S_p$ regularized function at local minima. | ✓                          | 100%                                     |
| 2. To propose a proximal gradient method with continuation technique (PGMC) to solve the $S_p$ regularization problem and investigate the convergence theory of the algorithms to the ground true low-rank solution under a weak regularity condition.                                                                                                     | ✓                          | 100%                                     |
| 3. To conduct numerical experiments to show the numerical capability of the PGMC on solving the $S_p$ regularization problem and compare with several state-of-the-art algorithms for low-rank matrix optimization. To apply our $S_p$ regularization model and numerical algorithm to complete scRNA-seq data and use the enhanced data to carry out      | ✓                          | 100%                                     |

|                                                                                                                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| downstream analyses including the clustering of cell population, cell type determination and gene regulatory network inference. |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|

## 6. Research Outcome

### 6.1 Major findings and research outcome

*(Maximum 1 page; please make reference to Part C where necessary)*

In this project, we explore low-rank matrix optimization problems through nonconvex regularization. We establish theoretical foundations and develop algorithms based on the nonconvex  $S_p$  regularization to tackle low-rank matrix optimization problems. Our proposed proximal gradient method with continuation technique (PGMC) is specifically designed to address the  $S_p$  regularization problem. A key finding from our work is that the PGMC demonstrates efficiency in numerical experiments, including analyses single-cell RNA sequencing data. The numerical results indicate that our proposed method effectively solves low-rank matrix optimization problems. Additionally, we investigate the exact recovery property and recovery bounds of the  $S_p$  regularization model, and we establish the convergence theory for the PGMC.

### 6.2 Potential for further development of the research and the proposed course of action

*(Maximum half a page)*

This project focuses on low-rank matrix optimization problems. We conduct numerical experiments, specifically analyzing single-cell RNA sequencing data. The proposed proximal gradient method with continuation technique (PGMC) is employed to efficiently address these problems. We have established theoretical foundations and developed algorithms based on nonconvex  $S_p$  regularization for low-rank matrix optimization. These theories and methods are not only valuable but also adaptable to a wide range of fields in science and engineering, including system identification and control, Euclidean embedding, collaborative filtering, machine learning, and computer vision.

## 7. Layman's Summary

*(Describe in layman's language the nature, significance and value of the research project, in no more than 200 words)*

The explosive growth of big data presents significant opportunities and has greatly benefited the development and the transformation of various disciplines. However, the challenges arise from issues such as missing data and gross errors, which complicate big data analysis. Low-rank matrix optimization is a crucial technique for addressing these challenges and has been successfully applied across various fields. Among the methods available, nuclear norm regularization is one of the most popular and practical approaches for solving low-rank matrix optimization problems. Nevertheless, it has certain limitations in both theoretical properties and practical applications. consequently, there is a pressing need to develop alternative low-rank promoting techniques that offer strong theoretical property and robust numerical performance.

In this project, we propose a proximal gradient method with continuation technique to tackle low-rank matrix optimization problems through nonconvex regularization. We also investigate its convergence theory toward the true low-rank solution. Our project enhances the understanding of nonconvex lower-order regularization problems from both theoretical and algorithmic perspectives, as well as their applications to a wide range of practical issues.

## Part C: Research Output

### 8. Peer-Reviewed Journal Publication(s) Arising Directly From This Research Project

(Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

| The Latest Status of Publications |                                                                  |              |                                 | Author(s)<br>(denote the corresponding author with an asterisk*) | Title and Journal / Book<br>(with the volume, pages and other necessary publishing details specified)                                                                               | Submitted to RGC<br>(indicate the year ending of the relevant progress report) | Attached to this Report<br>(Yes or No) | Acknowledged the Support of RGC<br>(Yes or No) | Accessible from the Institutional Repository<br>(Yes or No)                                                                            |
|-----------------------------------|------------------------------------------------------------------|--------------|---------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Year of Publication               | Year of Acceptance<br>(For paper accepted but not yet published) | Under Review | Under Preparation<br>(optional) |                                                                  |                                                                                                                                                                                     |                                                                                |                                        |                                                |                                                                                                                                        |
| 2022                              |                                                                  |              |                                 | Yaohua Hu, Gang Li*, Minghua Li, and Carisa Kwok Wai Yu          | Multiple-sets split quasi-convex feasibility problems: adaptive subgradient methods with convergence guarantee, <i>Journal of Nonlinear Variational Analysis</i> , 6(2), pp. 15-33. | 2022                                                                           | Yes                                    | Yes<br>(Annex I)                               | No<br><a href="https://doi.org/10.23952/jnva.6.2022.2.03">https://doi.org/10.23952/jnva.6.2022.2.03</a>                                |
| 2024                              |                                                                  |              |                                 | Yaohua Hu, Jingchao Li, Yanyan Liu, and Carisa Kwok Wai Yu*      | Quasi-subgradient Methods with Bregman Distance for Quasi-convex Feasibility Problems, <i>Journal of Nonlinear and Variational Analysis</i> , 8(3), pp. 381-395.                    | N/A                                                                            | Yes                                    | Yes<br>(Annex II)                              | Yes<br><a href="https://researchdb.hsu.edu.hk/view/publication/202400154">https://researchdb.hsu.edu.hk/view/publication/202400154</a> |
|                                   | 2024                                                             |              |                                 | Yaohua Hu, Xinlin Hu, Carisa Kwok Wai Yu, and Jing Qin*          | Joint Sparse Optimization: Lower-order Regularization Method and Application in Cell Fate Conversion, <i>Inverse Problems</i> , accepted.                                           | N/A                                                                            | No                                     | Yes                                            | No                                                                                                                                     |
|                                   |                                                                  | 2024         |                                 | Yin Li, Carisa Kwok Wai Yu, Jinhua Wang, and Weiping Shen        | Convergence Rate of the Projection Gradient Algorithm for Split Quality Problems in Hilbert Space, <i>Journal of Nonlinear and Convex Analysis</i> , under review.                  | N/A                                                                            | No                                     | Yes                                            | No                                                                                                                                     |

**9. Recognized International Conference(s) In Which Paper(s) Related To This Research Project Was / Were Delivered**  
*(Please attach a copy of each conference abstract)*

| Month / Year / Place      | Title                                                  | Conference Name                                                                                             | Submitted to RGC<br><i>(indicate the year ending of the relevant progress report)</i> | Attached to this Report<br><i>(Yes or No)</i> | Acknowledged the Support of RGC<br><i>(Yes or No)</i> | Accessible from the Institutional Repository<br><i>(Yes or No)</i> |
|---------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|
| 12/2022/<br>London,<br>UK | Optimization<br>Methodologies for<br>Big Data Analysis | 15th International<br>Conference of the<br>ERCIM WG on<br>Computational and<br>Methodological<br>Statistics | NA                                                                                    | Yes                                           | Yes<br><b>(Annex III)</b>                             | No                                                                 |

**10. Whether Research Experience And New Knowledge Has Been Transferred / Has Contributed To Teaching And Learning**  
*(Please elaborate)*

NA

---



---



---

**11. Student(s) Trained**  
*(Please attach a copy of the title page of the thesis)*

| Name | Degree Registered for | Date of Registration | Date of Thesis Submission / Graduation |
|------|-----------------------|----------------------|----------------------------------------|
| NA   | NA                    | NA                   | NA                                     |

**12. Other Impact**  
*(e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, teaching enhancement, etc.)*

NA

---



---



---

### 13. Statistics on Research Outputs

|                                                                                   | Peer-reviewed<br>Journal<br>Publications | Conference<br>Papers | Scholarly<br>Books,<br>Monographs<br>and<br>Chapters | Patents<br>Awarded | Other Research<br>Outputs<br>(please specify) |           |
|-----------------------------------------------------------------------------------|------------------------------------------|----------------------|------------------------------------------------------|--------------------|-----------------------------------------------|-----------|
| <b>No. of outputs<br/>arising directly<br/>from this<br/>research<br/>project</b> | 4 (including 1<br>paper under<br>review) | 1                    | NA                                                   | NA                 | Type<br>NA                                    | No.<br>NA |

### 14. Public Access Of Completion Report

*(Please specify the information, if any, that cannot be provided for public access and give the reasons.)*

| Information that Cannot Be<br>Provided for Public Access | Reasons |
|----------------------------------------------------------|---------|
| NA                                                       | NA      |