FDS8 (Apr 2017)

RGC Ref. No.: UGC/FDS14/P03/14 (please insert ref. above)

RESEARCH GRANTS COUNCIL COMPETITIVE RESEARCH FUNDING SCHEMES FOR THE LOCAL SELF-FINANCING DEGREE SECTOR

FACULTY DEVELOPMENT SCHEME (FDS)

Completion Report

(for completed projects only)

Submission Deadlines:	1.	Auditor's report with unspent balance, if any: within six months of
		the approved project completion date.
	2.	Completion report: within <u>12</u> months of the approved project
		completion date.

Part A: The Project and Investigator(s)

1. Project Title

Generalized Multicriteria Programs and Their Application in Portfolio Selection Problems

2. Investigator(s) And Academic Department(s) / Unit(s) Involved

Research Team	Name / Post	Unit / Department / Institution
Principal Investigator	YU Kwok-wai / Associate Professor	Department of Mathematics and Statistics / Hang Seng Management College
Co-Investigator(s)	YANG Xiao Qi / Professor	Department of Applied Mathematics / The Hong Kong Polytechnic University
Others		

3. Project Duration

	Original	Revised	Date of RGC / Institution Approval (must be quoted)
Project Start Date	1 January 2015		
Project Completion Date	31 December 2016	30 June 2017	12 September 2016
Duration (in month)	24 months	30 months	12 September 2016
Deadline for Submission of Completion Report	31 December 2017	30 June 2018	12 September 2016

Part B: The Final Report

5. Project Objectives

- 5.1 Objectives as per original application
 - *1.* to investigate the piecewise linear multicriteria programs and establish the Pareto optimal solutions for generalized piecewise linear multicriteria programs;
 - 2. to develop optimization solution methods and effective algorithms for bi-criteria portfolio optimization problems under the L_{∞} , VaR and CVaR risk measures, respectively.

5.2 Revised objectives

Date of approval from the RGC: Reasons for the change:

1. 2.

3.

5.3 Realisation of the objectives

(Maximum 1 page; please state how and to what extent the project objectives have been achieved; give reasons for under-achievements and outline attempts to overcome problems, if any)

The two project objectives have been addressed.

As stated in Objective 1, the project is to investigate the piecewise linear multicriteria programs. Since there exist a large (possibly infinite) number of Pareto optimal or non-dominated solutions for multicriteria programs, it is not an easy task to find effective solutions to such programs. We have reviewed the formulations for piecewise linear functions involved in a piecewise linear multicriteria program and proposed to formulate the function by modeling its epigraph related to the Pareto cone. It should be noticed that the epigraph of the function is the union of finitely many polyhedral sets. We have studied the optimality conditions and the properties of the Pareto optimal solutions for generalized piecewise linear multicriteria programs. We have also explored and proposed several subgradient methods for solving quasiconvex optimization problems. These methodologies can be applied for solving multicriteria programs involving quasiconvex functions.

In addition, we have investigated the bi-criteria portfolio optimization problems under the L_{∞} , VaR and CVaR risk measures, respectively (Objective 2). In particular, we proposed an alternative L_{∞} downside risk measure to replace the L_{∞} risk measure in a portfolio optimization problem. According to an equivalence relation between a multicriteria linear program and its weighted sum linear programs, and by a simple transformation, our

problem can be solved by considering its weighted sum piecewise linear programs. We have studied the characteristics of efficient portfolios and efficient frontier for our portfolio optimization model and provide analytic derivation of the optimal solution set.

5.4 Summary of objectives addressed to date

Objectives (as per 5.1/5.2 above)	Addressed (please tick)	Percentage Achieved (please estimate)
1. to investigate the piecewise linear multicriteria programs and establish the Pareto optimal solutions for generalized piecewise linear multicriteria programs	✓	100%
2. to develop optimization solution methods and effective algorithms for bi-criteria portfolio optimization problems under the L_{∞} , VaR and CVaR risk measures, respectively	✓	100%

6. Research Outcome

6.1 Major findings and research outcome (Maximum 1 page; please make reference to Part C where necessary)

The project addresses the multicriteria nature of the portfolio selection problem. A portfolio optimization model under an alternative L_{∞} downside risk measure has been proposed. The problem is formulated as a bicriteria piecewise linear program and can be converted into a parametric optimization problem, i.e. a weighted sum piecewise program. We have shown how to derive the efficient portfolios and the efficient frontier analytically. One of our findings is that the portfolio with the global minimum L_{∞} downside risk has the optimality strategy which recovers the so-called 1/N portfolio strategy. In our analytic derivation, we characterize the feasible portfolios in the bicriteria plane. Our main results show that the set of efficient portfolios consists of some bounded polyhedron, and accordingly, the efficient frontier consists of some closed line segments and one closed half-line. Hence, the optimal solution set of our parametric optimization problem can be derived analytically.

6.2 Potential for further development of the research and the proposed course of action (Maximum half a page)

The multicriteria nature of the portfolio selection problem has been addressed in our project. We have investigated the bicriteria piecewise linear program for portfolio selection. Our proposed problem can be extended further to a more general case in which three or more criteria are considered in the formulation of multicriteria portfolio optimization problems. Subgradient methods can be applied for solving such problems.

7. Layman's Summary

(Describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Multicriteria programming is an important topic in multiple criteria decision making. Multicriteria programs, which are usually formulated with a number of objective functions, are known to be powerful and are used extensively in various applications in the fields of financial engineering, management science, telecommunications, transportation and logistics. For each multicriteria program, there exist a large number of Pareto optimal solutions. It is generally difficult to locate nondominated sets completely and exactly. We have investigated the optimality conditions for multicriteria programs and determine the Pareto optimal sets analytically. The results and methodologies should be extendable to other fields for solving practical problems.

We have also investigated the methodologies of piecewise linear multicriteria programs with application to portfolio selection problems. It is well known that risk management is a core issue in portfolio selection problems, and thus developing an applicable methodology will provide an optimal investment strategy while directing risk management. The ideas/methodologies will bring advantages to financial industries in Hong Kong and other countries on a global scale.

Part C: Research Output

8. Peer-Reviewed Journal Publication(s) Arising <u>Directly</u> From This Research Project (Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The I	Latest Status	of Publi	cations		Title and	Submitted			
					Journal /	to RGC			
					Book	(indicate			
	Year of			Author(s)	(with the volume,	the year			
	Acceptance			(denote the	pages and other	ending of	Attached		Accessible
	(For paper			correspond-ing	necessary	the	to this	Acknowledged	from the
N/ C	accepted		Under	author	publishing	relevant	Report	the Support of	institutional
Year of	but not yet	Under	Preparation	with an	details	progress	(Yes or	RGC	repository
Publication	published)	Review	(optional)	asterisk)	specified)	report)	No)	(Yes or No)	(Yes or No)
2018				Carisa Kwok	Abstract	NA	Yes	Yes	Yes
				Wai YU,	Convergence				
				Yaohua HU,	Theorem for				
				Xiaoqi YANG*	Quasi-convex				
				and Siu Kai	Optimization				
				CHOY	Problems with				
					Applications,				
					Optimization.				
2018				Yan ZHANG,	Cubic	NA	Yes	Yes	Yes
				Yaohua HU*,	Convergence of				105
				Carisa Kwok	Newton-Steffen				
				Wai YU, and	sen's Method				
				Jinhua WANG	for Operators				
					with Lipschitz				
					Continuous				
					Derivative				
					Journal of				

			Nonlinear and Convex Analysis, 19(3), pp. 433-460.				
2018		Yan ZHANG, Carisa Kwok Wai YU, Ji-feng BAO, and Jinhua WANG	On Quadratical Convergence of Inexact Levenberg-Mar quardt Methods under Local Error Bound Condition, Journal of Nonlinear and Convex Analysis, 19(1), pp. 123-146.	NA	Yes	Yes	Yes
2017		Yaohua HU*, Xiaoqi YANG and Carisa Kwok Wai YU	Subgradient Methods for Saddle Point Problems of Quasiconvex Optimization, Pure and Applied Functional Analysis, 2(1), pp. 83-97.	2016	Yes	Yes	Yes
2016		Yaohua HU*, Carisa Kwok Wai YU, Chong LI and Xiaoqi YANG	Conditional Subgradient Method for Constrained Quasi-convex Optimization Problems, Journal of Nonlinear and Convex Analysis, 17(10), pp. 2143-2158.	2016	Yes	Yes	Yes
2016		Yaohua HU*, Carisa Kwok Wai YU, and Chong LI	Stochastic Subgradient Method for Quasi-Convex Optimization Problems, Journal of Nonlinear and Convex Analysis, 17(4), pp. 711-724.	2016	Yes	Yes	Yes
	 ✓ 	Kaiwen MENG, Carisa Kwok Wai YU* and Xiaoqi YANG	Bicriteria Portfolio Optimization via ℓ_{∞} Downside Risk Measure, Annals of Operations Research		No	Yes	No

9. Recognized International Conference(s) In Which Paper(s) Related To This Research Project Was / Were Delivered

(Please attach a copy of each conference abstract)

Month / Year / Place	<u>Title</u>	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report) 2016	Attached to this Report (Yes or No) Ves	Acknowledged the Support of RGC (Yes or No) Yes	Accessible from the institutional repository (Yes or No) Ves
Poznan, Poland	Optimization Models under Various Risk Measures	Conference on Operational Research	2010	105	105	105
December / 2015 / Changsha, China	Bicriteria Portfolio Optimization Problem under the Minimax Rule	The 6 th International Conference on Optimization and Control with Applications	2015	Yes	Yes	Yes
August / 2015 / Toronto, Canada	Bi-criteria Portfolio Optimization Problems with the Use of Conditional Value-at-Risk Risk Measure	The 50 th Actuarial Research Conference	2015	Yes	Yes	Yes

10. Whether Research Experience And New Knowledge Has Been Transferred / Has Contributed To Teaching And Learning

(Please elaborate)

NA

11. Student(s) Trained

(Please attach a copy of the title page of the thesis)

Name	Degree Registered for	Date of Registration	Date of Thesis Submission / Graduation
NA			

12. Other Impact

(e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, teaching enhancement, etc.)

13. Public Access Of Completion Report

(Please specify the information, if any, that cannot be provided for public access and give the reasons.)

Information that Cannot Be Provided for Public Access	Reasons
NA	

RESEARCH GRANTS COUNCIL COMPETITIVE RESEARCH FUNDING SCHEMES FOR THE LOCAL SELF-FINANCING DEGREE SECTOR

FACULTY DEVELOPMENT SCHEME (FDS)

Completion Report - Attachment

(for completed projects only)

RGC Ref. No.:	UGC/FDS14/P03/14
Principal Investigator:	YU Kwok-wai
Project Title:	Generalized Multicriteria Programs and Their Application in Portfolio Selection Problems

Statistics on Research Outputs

	Peer- reviewed Journal Publications	Conference Papers	Scholarly Books, Monographs and Chapters	Patents Awarded	Other Research Outputs (Please specify)
No. of outputs arising directly from this research project [or conference]	6	3			