European Commission (EC) / Research Grants Council (RGC) Collaboration Scheme

Completion Report

(Please attach a copy of the completion report submitted to the European Commission by the project coordinator of the concerned Horizon 2020 project)

Part A: The Project and Investigator(s)

1. Project Title

Holistic Investigation of Fate and Behaviour of Emerging Contaminants in Complex Environmental Matrices

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	Europe Team
Name of Principal	Prof. Daniel Chiu Wa	Prof. Stuart HARRAD
Investigator / Project	TSANG	
Coordinator (with title)		
Post	Professor	Professor
Unit / Department /	Civil and Environmental	Geography, Earth and
University	Engineering /	Environmental Sciences /
	The Hong Kong Polytechnic	University of Birmingham
	University	
Contact Information	dan.tsang@polyu.edu.hk	s.j.harrad@bham.ac.uk
		_

3. **Project Duration**

	Original	Revised	Date of RGC/ University Approval (must be quoted)
Project Start date	1 Apr 2018	N.A.	
Project Completion date	31 Dec 2020	N.A.	
Duration (in month)	33	N.A.	
Deadline for Submission of Completion Report	31 Dec 2021	N.A.	

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1) Establish comprehensive FRs/PPCPs distribution patterns in environments and waste streams (i.e., regional agricultural soils, local marine sediments, and incinerated ashes) by non-target analysis with the aid of ultra-high-resolution mass spectrometric techniques and statistical analysis;
 - 2) Elucidate toxicity profiles of the environmental samples by rapid bioassay screening (e.g., DR-Luc bioassay, ER-Luc bioassay, AR-EcoScreen bioassay, and transthyretin (TTR) binding assay) for revealing spatial- and medium-wise toxicity response;
 - 3) Unveil bioactive species of FRs/PPCPs in the environmental samples via effect-directed analysis (EDA);
 - 4) Investigate the effect of physicochemical properties of environmental compartments (e.g., pH, organic carbon, cation exchange capacity, and particle size) on the behaviour and desorption dynamics of various emerging FRs/PPCPs.
- 5.2 Revised Objectives

N.A.

6. Research Outcome

Major findings and research outcome

(maximum 1 page; please make reference to Part C where necessary)

<u>Major finding 1: Sediment samples exhibit the highest risk associated with dioxin-like toxicity</u> Soil and sediment samples exhibit significant dioxin-like activities compared to the carcinogenic reference compounds (**Figure 1a&b**). As for comparison among different environmental compartments, sediments tended to induce a higher DR-Luc response, which had a median value of 64.2% (with respect to TCDD) that exceeded 96% of the soil samples. In addition to the pollution sources, the environmental fate of pollutants is one of the critical determinants of the biological toxicity. While sediments are located in aqueous and anoxic environment, soils have a larger particle size and porosity and are more exposed to air, which can cause differences in the adsorption of pollutants on organic matter.

Figure 1. (a&b) DR-Luc activity (% with respect to the TCDD response) of different soil and sediment samples. J: Jiangsu, S: Shanghai, Z: Zhejiang, Q: Qingyuan. PLS score plots of dataset categorized by (c) soil location and (d) DR-Luc activity.

Major finding 2: Soils from Yangtze River Delta (YRD) region have similar chemical profile and biological response

The score plots show no clusters of the agricultural soil samples from Jiangsu, Shanghai, and Zhejiang, indicating that the sample characteristics may not be strongly correlated with the regions. Higher concentrations of PAEs, PBDEs, and OCPs were detected on the borders between Shanghai and Jiangsu and the borders between Shanghai and Zhejiang, implying a less obvious regional differences. This is probably because the major pollutant sources emitting from chemical factories were located near the borders to alleviate pollution in densely populated downtowns. Besides, a variety of naturally occurring and synthetic compounds of diverse structure and lipophility are able to bind AhR and induce DR-Luc activity, which may result in the observed scattering of the dataset when being categorized by locations (**Figure 1c**).

Major finding 3: Dioxin-like activity is positively correlated to the chemical profile

The partial least squares (PLS) regression suggests that the DR-Luc response can be partially explained by 90 contaminants, and samples exhibiting comparable DR-Luc activity are likely to share similar chemical profiles (**Figure 1d**). The regression model fitting had a R^2 value of 0.9113 for the observed DR-Luc activity versus the predicted DR-Luc activity. The revealed relationship between chemical properties and biological responses are important for understanding the actual impacts of contaminants of emerging concerns on ecosystem and human health for making adequate decision in risk control.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

In this study a wide range of samples were analysed, including agricultural soils from polluted regions, marine sediments, and incineration ashes of sewage sludge and municipal solid waste. The DR-Luc bioassay revealed that the soil and sediment samples, which were contaminated by PAHs, PCBs, PBDEs, etc., exhibited significant dioxin-like activities. The sediment samples appear to induce a higher biological response, possibly due to the distinct environment of sediments (aquatic, anoxic) that could have promoted different transformation pathways of the organic contaminants. The DR-Luc activity exhibited insignificant correlation with the increase of contaminant concentrations, which was different from general observation of the single type of environmental samples. These results implied the potential significance of the environmental matrices in the biological toxicity patterns. The PLS regression model did not suggest definite regional differences while the samples exhibited a similar level of DR-Luc response clustered together. This study addressed the significance of biological implications in addition to chemical concentrations, which are important for understanding the actual impacts and devising adequate risk control of environmental contamination. Future research is required to examine the presence of a wider spectrum of dioxins (e.g., polychlorinated dibenzodioxins and polychlorinated dibenzofurans) through non-target analysis. The study of correlation between individual dioxin species and dioxin-related toxicity should also be verified in the environmental samples.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

There are growing concerns over environmental contamination by toxic and bioaccumulative organic chemicals in consumer products. Flame retardants (FRs) can be released to the environment upon disposal and recycling of waste electric and electronic equipment (e-waste). Chemicals in pharmaceutical and personal care products (PPCPs) such as antibiotics have been found persisting in various media, including treated effluents and sewage sludge from wastewater treatment plants, surface water, and marine sediment. Therefore, there is a pressing need to address these contaminants of emerging concerns for risk control. This project investigated FRs and PPCPs present in major waste streams in a holistic approach. A wide spectrum of environmental samples were analysed: (i) agricultural soils in densely populated region and e-waste recycling cities in China; (ii) marine sediments in Hong Kong; and (iii) incineration ashes of sewage sludge in Hong Kong and municipal solid waste in China, respectively. Comprehensive pollutant analyses and toxicity assessments were undertaken to detail the contamination at sampling areas and to offer scientific insights into the potential biological impacts. The research outcomes enable decision makers to prioritise the need for contaminant monitoring and regulation in major waste streams, and raise public awareness towards emerging contaminants and sustainable urban development.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicat	ions	Author(s)	Title and Journal/ Book	Submitted to	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(bold the authors belonging to the	(with the volume, pages and other necessary	RGC	to this	the support of	from the
publication	Acceptance	Review	Preparation	project teams and denote the	publishing details specified)	(indicate the	report	this	institutional
	(For paper			corresponding author with an asterisk*)		year ending	(Yes or	collaboration	repository
	accepted but		(optional)			of the	No)	scheme	(Yes or No)
	not yet					relevant		(Yes or No)	
	published)					progress			
2021				Mingling Ho. Zhonghoo Wan	Derformance indicators for a balistic	report)	Vac	Vac	Vac
2021				Designed C W. Trees * Version	renormance indicators for a nonstic	110	1 65	1 05	1 65
				Daniel C.w. Isang, Yuqing	evaluation of catalyst-based				
				Sun, Eakalak Khan, Deyi Hou,	degradation—A case study of selected				
				Nigel J.D. Graham	pharmaceuticals and personal care				
					products (PPCPs). Journal of				
					Hazardous Materials, 402, 123460.				
					(Citations: 9)				
2020				Md. Uzzal Hossain, Lei Wang [*] ,	Evaluating the environmental impacts of	No	Yes	Yes	Yes
				Liang Chen, Daniel C.W.	stabilization and solidification				
				Tsang [*] , S. Thomas Ng,	technologies for managing hazardous				
				Chi Sun Poon, Viktor	wastes through life cycle assessment: A				
				Mechtcherine	case study of Hong Kong Environment				
					International 145 106139 (Citations:				
					6)				
2020				Di Wang Yuging Sun Daniel	Synergistic utilization of inherent halides	No	Yes	Ves	Yes
2020				C W Tsang [*] Fakalak Khan	and alcohols in hydraulic fracturing	110	105	105	105
				Dong Wang Cho, Vaoyu Zhou	wastewater for radical based treatment:				
				Esi Oi Jianan Cana Linling	A age study of di (2 sthull soul)				
				Fel QI, Jianyu Gong, Liniing	A case study of di-(2-ethylnexyl)				
				wang	phthalate removal. Journal of				
					Hazardous Materials, 384, 121321.				
					(Citations: 22)				

2019	Lei Wang, Liang Chen, Daniel	Mechanistic insights into red mud, blast	No	Yes	Yes	Yes
	C.W. Tsang*, Yaoyu Zhou, Jörg	furnace slag, or metakaolin-assisted				
	Rinklebe, Hocheol Song,	stabilization/solidification of				
	Eilhann E. Kwon, Kitae Baek,	arsenic-contaminated sediment.				
	Yong Sik Ok	Environment International , 133,				
		105247. (Citations: 50)				
2019	Xinni Xiong, Xueming Liu, Iris	Potentially toxic elements in solid waste	No	Yes	Yes	Yes
	K.M. Yu, Lei Wang, Jin Zhou,	streams: Fate and management				
	Xin Sun, Jörg Rinklebe, Sabry	approaches. Environmental Pollution,				
	M. Shaheen, Yong Sik Ok,	253, 680-707. (Citations: 32)				
	Zhang Lin, Daniel C.W. Tsang*					
2019	Yuqing Sun, Dong-Wan Cho,	Degradation of antibiotics by modified	No	Yes	Yes	Yes
	Nigel J.D. Graham, Deyi Hou,	vacuum-UV based processes:				
	Alex C.K. Yip, Eakalak Khan,	Mechanistic consequences of H ₂ O ₂ and				
	Hocheol Song, Yaru Li, Daniel	$K_2S_2O_8$ in the presence of halide ions.				
	C.W. Tsang [*]	Science of The Total Environment.				
		664, 312-321. (Citations: 66)				
2019	Dong-Wan Cho, Kwangsuk	Fabrication and environmental	No	Yes	Yes	Yes
	Yoon. Yongtae Ahn, Yuqing	applications of multifunctional mixed				
	Sun, Daniel C.W. Tsang*, Deyi	metal-biochar composites (MMBC)				
	Hou, Yong Sik Ok, Hocheol	from red mud and lignin wastes.				
	Song	Journal of Hazardous Materials. 374,				
		412-419. (Highly Cited Paper)				
		(Citations: 95)				
2019	Lei Wang Dong-Wan Cho,	Green Remediation of As and Pb	Yes	No	Yes	Yes
	Daniel C.W. Tsang [*] , Xinde	Contaminated Soil using Cement-free	(2019)			
	Cao, Deyi Hou, Zhengtao Shen,	Clay-based Stabilization/Solidification.				
	Daniel S. Alessi, Yong Sik Ok,	Environment International , 126,				
	Chi Sun Poon	336-345. (Highly Cited Paper)				
		(Citations: 145)		1		

2019	Liang Chen, Lei Wang,	Sustainable stabilization/solidification of	Yes	No	Yes	Yes
	Dong-Wan Cho, Daniel C.W.	municipal solid waste incinerator fly ash	(2019)			
	Tsang [*] , Lizhi Tong, Yaoyu	by incorporation of green materials.				
	Zhou, Jian Yang, Qing Hu, Chi	Journal of Cleaner Production, 222,				
	Sun Poon	335-343. (Highly Cited Paper)				
		(Citations: 85)				
2019	Yuqing Sun, Di Wang, Daniel	A Critical Review of Risks,	Yes	No	Yes	Yes
	C.W. Tsang [*] , Linling Wang,	Characteristics, and Treatment Strategies	(2019)			
	Yong Sik Ok, Yujie Feng	for Potentially Toxic Elements in				
		Wastewater from Shale Gas Extraction.				
		Environment International , 125,				
		452-469. (Citations: 60)				
2019	Yuqing Sun, Iris K.M. Yu,	Multifunctional Iron-Biochar	Yes	No	Yes	Yes
	Daniel C.W. Tsang [*] , Xinde	Composites for the Removal of	(2019)			
	Cao, Daohui Lin, Linling Wang,	Potentially Toxic Elements, Inherent				
	Nigel J.D. Graham, Daniel S.	Cations, and Hetero-chloride from				
	Alessi, Michael Komárek, Yong	Hydraulic Fracturing Wastewater.				
	Sik Ok, Yujie Feng, Xiang-Dong	Environment International, 124,				
	Li	521-532. (Highly Cited Paper)				
		(Citations: 240)				
2019	Lei Wang, Liang Chen, Daniel	The roles of biochar as green admixture	Yes	No	Yes	Yes
	C.W. Tsang [*] , Harn Wei Kua,	for sediment-based construction	(2019)			
	Jian Yang, Yong Sik Ok,	Products. Cement and Concrete				
	Shiming Ding, Deyi Hou, Chi	Composites, 104, 103348. (Highly				
	Sun Poon	<i>Cited Paper)</i> (Citations: 87)				
2019	Lei Wang, Liang Chen,	Novel Synergy of Si-rich minerals and	Yes	No	Yes	Yes
	Dong-Wan Cho, Daniel C.W.	Reactive MgO for	(2019)			
	Tsang [*] , Jian Yang, Deyi Hou,	Stabilisation/Solidification of				
	Kitae Baek, Harn Wei Kua,	Contaminated Sediment. Journal of				
	Chi-Sun Poon	Hazardous Materials, 365, 695-706.				
		(Highly Cited Paper) (Citations: 100)				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
Place			to RGC	to this	the support of	from the
			(indicate the	report	this	institutional
			year ending	(Yes or No)	collaboration	repository
			of the		scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			
5-6	Risk-based	CleanUp Korea	No	Yes	Yes	No
December,	management and	2019 Conference				
2019, Seoul,	remediation of					
Korea	arsenic-containing					
	soils (Keynote)					
1-5	Novel and green	Green	No	Yes	Yes	No
December	biochar catalysts for	Technologies for	1.10			1.10
2019 Ho	advanced oxidation	Sustainable Water				
Chih Ming	of environmental	Conference				
Citri Citri	nollutanta (Invitad)	Contenence				
City, Vietnem	ponutants (mvited)					
Vietnam	4 1 1		Ъ.т.	37	x 7	Ът.
4-6 August,	Advanced	Sth International	No	Yes	Yes	NO
2019,	wastewater treatment	Conference on				
Harbin,	by designing	Environmental				
China	sustainable biochar	Pollution and				
	catalysts (Keynote)	Health				
1-3 July,	Biochar-mineral	US Biochar	No	Yes	Yes	No
2019, Fort	composites for	Initiative				
Collins,	catalytic degradation	Conference				
USA	of environmental					
	pollutants (Invited)					
6-9 May.	Biochar-supported	International	No	Yes	Yes	No
2019	catalysts for	Conference on				
Yangling	biorefinery and	Sustainable Solid				
China	pollution control	Waste Treatment				
Ciiiia	(Invited)	and Management				
10.12 Juna	Tashnisal and	and International	V_{22} (2010)	No	Vac	No
10-15 Julie,	recificar and	Conformação	1 es (2019)	NO	1 65	INO
2018, Hannahaan	economic assessment					
Hongcheon,	of green remediation	Bioresources,				
Korea	and recycling of	Energy,				
	dredged sediment	Environment, and				
	(Keynote)	Materials				
		Technology				
19-23	Engineered biochar	256th American	Yes (2019)	No	Yes	No
August,	for contaminant	Chemical Society				
2018,	adsorption and	National Meeting				
Boston,	reduction (Keynote)					
USA						
26-28	Fate of metals in	1st Asia Resilience	Yes (2019)	No	Yes	No
November.	solid waste streams	Center Conference	, ,			
Seoul.	(Invited)					
Korea						

Name	Degree registered for	Date of registration	Date of thesis	
			submission/	
			graduation	
Xinni Xiong	PhD	2016	Jul 2021	
Season S. Chen	PhD	2014	Mar 2019	
Yuqing Sun	PhD	2014	Aug 2018	

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

11. Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

N/A

12. Statistics on Research Outputs

(Please ensure the summary statistics below are consistent with the information presented in other parts of this report.)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	Other research
	publications	pupers	chapters		(Please specify)
No. of outputs arising directly from this research project	13	8	-	-	-