RGC Ref.: A-HKUST601/13

(please insert ref. above)

The Research Grants Council of Hong Kong ANR/RGC Joint Research Scheme <u>Completion Report</u>

(Please attach a copy of the completion report submitted to the ANR by the French researcher)

Part A: The Project and Investigator(s)

1. Project Title (ANR Acronym)

Title: Calcium signalling in glioblastoma multiforme: Combining oncology and neurogenesis with synthetic biology and optical imaging to relate calcium signalling with neural stemness. ANR Acronym: CalciumGlioStem

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	French Team
Name of Principal	Prof. Andrew L. Miller	Dr Catherine Leclerc
Investigator (with title)		
Post	Professor	Chargée de Research 1 st Class,
		CNRS
Unit / Department /	Division of Life Science,	University of Toulouse CNRS
Institution	HKUST	UPS (Formerly known as
		CNRS/UMR 5547, Université
		Paul Sabatier)
Contact Information	Tel: 2358 8631	Tel: 05 61 55 63 98
	E-mail: almiller@ust.hk	E-mail: catherine.leclerc@univ-
		tlse3.fr
Co-investigator(s)		Dr Marc Moreau/ University of
(with title and		Toulouse CNRS UPS (Formerly
institution)		known as Université Paul
		Sabatier).
		Dr Hervé Chneiweiss/ CNRS
		Neurosciences Paris-Seine, Paris.
		Prof. Jacques Haiech/ Université
		Louis Pasteur – Laboratoire
		d'Innovation Thérapeutique,
		Strasbourg.
		Prof. Marie-Claude Kilhofer/
		Université Louis Pasteur –
		Laboratoire d'Innovation
		Thérapeutique, Strasbourg.

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	10/01/2014	N/A	
Project Completion date	31/12/2016	30/06/2017	06/09/2016 Institution approval
Duration (in month)	36	42	06/09/2016 Institution approval
Deadline for Submission of Completion Report	31/12/2017	30/06/2018	

Part B: The Completion Report

5. Project Objectives

- 5.1 Objectives as per original application:
 - 1. To understand how Ca^{2+} controls the stem cell state properties of GBM and via which Ca^{2+} toolkit components.
 - 2. To investigate how abnormalities in Ca²⁺ homeostasis affects the dynamics and progression of GBM-related properties.
- 5.2 Revised Objectives: N/A

Date of approval from the RGC:

Reasons for the change:

1.

2.

3.

6. Research Outcome

Major findings and research outcome (maximum 1 page)

The Miller lab has been involved mainly in the zebrafish-based experiments in Task 2 of the project. Thus, we: 1) Successfully developed lines of transgenic fish, which stably express the bioluminescent Ca^{2+} indicators aequorin or nano-lantern under the control of the *her4.1* promoter; 2) Investigated the role of Ca^{2+} signaling during normal neurogenesis in neural stem cells (NSCs) isolated from the brain of adult zebrafish; and 3) Developed an electroporation method to introduce apoaequorin into zebrafish NSCs in suspension culture.

1) Generating transgenic zebrafish fish lines where a variety of bioluminescent Ca^{2+} reporters have been expressed under the control of the *her4.1* promoter. A significant period was spent overcoming technical challenges that are the norm with regards to innovative and complex research projects. The generation of viable transgenic vertebrates (including zebrafish) that do not suffer from abnormalities resulting from either the techniques used or the foreign genes introduced is a challenging and time-consuming process, which takes many months to achieve a stable line. However, where transgenesis is successful, the end-results are well worth the effort. In this case, two lines of F₂ homozygous transgenic fish which stably express the bioluminescent Ca^{2+} indicators GFP-aequorin or nano-lantern Ca^{2+} 150 under the control of the *her4.1* promoter have been successfully generated and stable lines of both have been developed.

2) Identification of Ca^{2+} signaling components in proliferating and differentiating neurospheres derived from primary neural stem cells isolated from the zebrafish brain. We used a variety of complementary methods to investigate the role of Ca^{2+} signaling during normal neurogenesis in neural stem cells isolated from the brains of wild-type adult fish. The methods used and results obtained are outlined below:

(a) Isolating primary NSCs from adult zebrafish brains via neurosphere production. The development of reliable protocols for isolating/culturing neural adult stem/progenitor cells from the brain of adult fish (Cortés-Campos *et al.*, 2015), meant that a detailed analysis of the molecular mechanisms underlying neurogenesis was possible. Using similar protocols, we demonstrated that cells dissociated from neurospheres can differentiate into cells with neuronal, astrocyte or oligodendrocyte characteristics. We subsequently used neurospheres (and cells dissociated from neurospheres) at proliferation day 5 (P5) and differentiation days 7 and 14 (D7 and D14) to identify the Ca²⁺ signaling dynamics and Ca²⁺ toolkit components responsible for the maintenance and switch between proliferation and differentiation in NSCs. (b) The mRNA levels of selected Ca²⁺ toolkit elements in NSCs and NSC-derived cells are modulated during the switch from proliferation and differentiation, mRNA was extracted from NSCs and NSC-derived cells at P5, D7 and D14. Subsequent qPCR showed that at D14, there was a significantly reduced level of *ryr2a* mRNA but significantly higher levels of *ip3r1b*, *ip3r3*, *ryr3*, and *stim1b* mRNA. (c) The

Ca²⁺ chelator, BAPTA-AM, significantly reduces the elongation of outgrowths in differentiating cells. P5 cells were plated and cultured in differentiation medium in the presence or absence of the membrane permeable intracellular Ca²⁺ chelator, BAPTA-AM, for 7 days and the morphology of the cells was then analyzed. Our data showed that the total length of outgrowths in the differentiating cells treated with BAPTA-AM was significantly shorter than those in the solvent controls, whereas there was no significant difference in the number of outgrowths per cell. (d) Expression and localization of IP₃R1 & RyR2 in cells with neuronal and glial morphology at D7. Immunolabelling experiments were conducted to investigate the localization of IP₃R1 and RyR2 in cells expressing HuC/D (a neuronal marker) and GFAP (a glial marker) at D7. Our results indicated that IP_3R (type 1) and RyR (type 2) are expressed in cells with neuronal- or glial-like properties but with different patterns of localization. (e) Effect of ATP and caffeine on the stimulation of Ca^{2+} signals generated by dissociated 2° neurosphere cells with neuron- or glial-like morphology. We showed that dissociated P5 and D7 cells that exhibited neuron- or glialike morphologies generated intracellular Ca²⁺ signals in response to stimulation by ATP but not caffeine. A manuscript describing the results obtained for #2, is currently under review in Science China Life Science – see Tse et al. in Section C8.

3) Development of an electroporation method to introduce apoaequorin into zebrafish neural stem cells. Dr. Francisco Aulestia from the lab of the French PI, Dr. Leclerc, spent 3 weeks during Fall 2016, working in Prof Miller's lab at HKUST where he helped to develop methods to optimize the incorporation (via electroporation) of EGFP-apoaequorin into primary cultures of cells dissociated from the zebrafish brain. This is a technique that Dr. Aulestia used routinely for his work on human GBM cells in the Toulouse-based laboratory. *A manuscript describing the work conducted for Research Outcome #3, is currently in preparation – see Aulestia et al. in Section C8.*

Reference:

Cortes-Campos, C., Letelier, J., Ceriani, R., Whitlock, K.E. (2015). Zebrafish adult-derived hypothalamic neurospheres generate gonadotrophin-releasing hormone (GnRH) neurons. Biol Open 4, 1077-1086.

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The lines of homozygous transgenic fish that have been generated, which stably express the bioluminescent Ca²⁺ indicators GFP-aequorin or nano-lantern Ca²⁺ 150 under the control of the *her4.1* promoter, are now ready for further use in experiments to investigate the pattern of Ca^{2+} signaling in the normally developing/functioning brain, as well as how the Ca²⁺ signals might change with GBM. We plan to make these fish lines available on-request to other researchers. We have the pDEST-gfap:Gal4-vp16 and pIUI-mCherry-KRas^{G12V} constructs from Dr Michael Taylor (St Jude Children's Research Hospital, Memphis, TN, USA), which when injected into early zebrafish embryos induce brain tumors. It is reported that microinjection of these constructs leads to around 20-50% of the fish carrying brain tumors, some of which are GBM (Ju et al., 2015). Brain tumors can be identified by fluorescence immunolabeling cells with the CD133 primary antibody. Brain tumor cells can also be purified by fluorescence-activated cell sorting (FACS) and neurospheres subsequently prepared. The Ca²⁺ signals generated in the brain of live transgenic fish that stably express aequorin or nano-lantern Ca^{2+} and transiently express $KRas^{G12V}$ or in neurospheres isolated from the brains of aequorin/nano-lantern and KRas^{G12V}-expressing fish can be studied. The presence of tumor cells and specifically the manifestation of GBM can be identified retrospectively in intact fish and in isolated cells as appropriate. This data obtained can be compared with data generated from normal (i.e., without transient KRas expression) transgenic fish that stably express aequorin or nano-lantern Ca^{2+} as controls. Once the Ca^{2+} signals in normal and GBM brains or neurospheres are characterized, the effect of treatment of GBM cells with bisacodyl can be determined.

Reference:

Ju, B., Chan, W., Orr, B.A., Spitsbergen, J.M., Jia, S., Eden, C.J., Henson. H.E., and Taylor, M.R. (2015). Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol. Cancer 14:18 DOI: 10.1186/s12943-015-0288-2.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

The development of the central nervous system (CNS) in vertebrate embryos involves the generation of different types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the formation/plasticity/regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. In this project, we refined a protocol to generate proliferating and differentiating neurospheres from the brain of adult zebrafish. We demonstrated that: the genes that encode some Ca^{2+} channels (*ip3r*, *ryr* and *stim*) are significantly upregulated or downregulated in differentiating neurospheres; the endoplasmic reticulum-based Ca²⁺ channels, 1,4,5-inositol trisphosphate receptor type-1 and ryanodine receptor type-2 are differentially expressed in cells with neuron- or radial glial-like properties; and ATP (an IP₃R agonist) induced the generation of Ca²⁺ transients in these cells whereas caffeine (an RyR agonist), did not. Our results indicate the differential expression of Ca²⁺-signaling components in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be useful for exploring glioblastoma multiforme diagnosis protocols and drug development using Ca²⁺-signaling as a read-out.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicat	ions	Author(s)	Title and	Submitted to	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(bold the	Journal/ Book	RGC	to this	the support of	from the
publication	Acceptance	Review	Preparation	authors	(with the	(indicate the	report (Yes	this Joint	institutional
	(For paper			belonging to	volume, pages	year ending	or No)	Research	repository
	accepted but		(optional)	the project	and other	of the		Scheme	(Yes or No)
	not yet			teams and	necessary	relevant		(Yes or No)	
	published)			denote the	publishing	progress			
				corresponding	aetails	report)			
				asterisk*)	specified)				
	2018			M.K. Tse,	Identificati	2018	Yes	Yes	No
				T.S. Hung,	on of Ca ²⁺				
				C. M. Chan,	signaling				
				T. Wong,	components				
				М.	in neural				
				Dorothea,	stem/proge				
				C. Leclerc,	nitor cells				
				М.	during				
				Moreau,	differentiati				
				A.L. Miller	on into				
				and S.E	neurons and				
				Webb*	glia in				
					intact and				
					dissociated				
					zebrafish				
					neurospher				
					es.				
					Sci China				
					Life Sci				
					Doi:				
					10:1007/s1				
					1427-018-				
					9315-6.				

MULTI-PARTNER PUBLICATIONS

	2018	H.B. Hao,	The effect	2018	Yes	Yes	No
		S.E. Webb,	of pyrazole				
		J. Yue. M.	3 treatment				
		Moreau C	on the				
		Loolono and	generation				
		Lecierc and	of				
		A.L.	intracellular				
		Miller*	Ca^{2+}				
			transients				
			and				
			mitochondr				
			lai				
			memorane				
			potential, as				
			well as the				
			survival				
			and neural				
			differentiati				
			on of				
			mouse				
			embryonic				
			stem cells.				
			J. Stem				
			Cells (In				
			press)				
2018		H.B. Hao.	TRPC3 is	2018	Yes	Yes	Yes
		S.E. Webb.	required for				
		I Yue M.	the				
		Moreau C	survival				
		Laclarc	nlurinotenc				
		and A I	y and				
		Millor*	y and				
		IVINICI *	difforentieti				
			on of				
			mouse				
			embryonic				
			stem cells				
			(mescs).				
			Sci. China				
			Life Sci.				
			01(3):253-				
2016			203.	2010	N 7	37	N7
2016		C. Leclerc,	Calcium	2018	Yes	Yes	Yes
		J. Haiech,	signaling				
		F. Aulestia,	orchestrates				
		МС.	glioblastom				
		Kilhoffer,	a				
		A.L.	developme				
		Miller, I.	nt: Facts				
		Néant, S.E.	and				
		Webb, E.	conjuncture				
		Schaeffer,	s.				
		M.P. Junier.	Biochim.				
		H.	Biophys.				
		Chneiweiss	Acta 1863:				
		, and M.	1447-1459				
		Moreau*					
1	· ·		1				

2016			Moreau, M., Néant, I., Webb, S.E., Miller, A.L., Riou, JF., Leclerc, C.*	Ca ²⁺ coding and decoding strategies for the specificatio n or neural and renal precursor cells during developme nt. <i>Cell</i> <i>Calcium</i> . 59(2-3): 75- 83.	2018	Yes	Yes	Yes
		2018	F.J. Aulestia, C.M. Chan, M.K. Tse, C. Leclerc, M. Moreau, S.E. Webb, A.L. Miller*	Monitoring Ca ²⁺ signals in the cytosol and mitochondr ia of both single cells and multi- cellular neurospher es derived from the adult zebrafish brain. (<i>In</i> <i>revision</i>).	2018	Yes	Yes	No
		2018	I. Néant, H.C. Leung, S.E. Webb, A.L. Miller, M. Moreau C. Leclerc*	TRPC1 is the missing link between the BMP and the Ca ²⁺ signaling pathways during neural specificatio n in amphibians. (<i>Working</i> <i>paper</i>).	2018	Yes	Yes	No

· · · · · ·						
2017	S.E. Webb, A.L.	Ca ²⁺ signaling	2018	Yes	Yes	No
	Miller*	and				
		membrane				
		dynamics				
		during				
		cytokinesis				
		in animal				
		cells. In				
		Press in				
		Advances in				
		Experiment				
		al Medicine				
		and				
		Biology,				
		Vol. 981,				
		Joachim				
		Krebs				
		(Eds):				
		Membrane				
		Dynamics				
		and				
		Calcium				
		Signaning.				
2018	S.E.	The use of	2018	Yes	Yes	No
	Webb*,	complemen				
	A.L. Miller	tary				
		luminescent				
		and				
		fluorescent				
		for imaging				
		Ca^{2+}				
		sionallino				
		events				
		during the				
		early				
		developme				
		nt of				
		zebrafish				
		(Danio				
		rerio)				
		Invited				
		Book				
		Chapter In				
		Methoda in				
		Molecular				
		Riology				
		Claus				
		Heizmann				
		(Ed.)				
		` <i>'</i>				

2018		J.J. Kelu,	TPC2-	2018	Yes	Yes	Yes
		S.E. Webb,	mediated				
		A. Galione,	Ca^{2+}				
		A.L.	signaling is				
		Miller*	required for				
			the				
			establishme				
			nt of				
			synchronize				
			d activity in				
			developing				
			zebrafish				
			primary				
			motor				
			neurons.				
			Dev. Biol.				
			438: 57-68.				
2017		J.J. Kelu,	Ca ²⁺ release	2018	Yes	Yes	Yes
		S.E. Webb,	via two-				
		J.	pore				
		Parrington,	channel				
		A. Galione,	type 2				
		A.L.	(TPC2) is				
		Miller*	required for				
			slow				
			muscle cell				
			myofibrillo				
			genesis and				
			myotomal				
			patterning				
			in intact				
			zebrafish				
			embryos.				
			Dev. Biol.				
			425:109-				
			129.				

2016		C.M. Chan, J.T.M. Aw, S.E. Webb , A.L. Miller *	SOCE proteins, STIM1 and Orai1, are localized to the cleavage furrow during cytokinesis of the first and second cell division cycles in zebrafish embryos. Zygote 24:880- 889.	2018	Yes	Yes	Yes
2016		H.Y.S. Chan, M.C. Cheung, Y. Gao, A.L. Miller, S.E. Webb*	Expression and reconstituti on of the biolumines cent Ca^{2+} reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP ₃ and ryanodine receptors during the early stages of their differentiati on into cardiomyoc ytes. <i>Sci. CHINA</i> <i>Life Sci.</i> <i>59(8): 811-</i> <i>824.</i>	2018	Yes	Yes	Yes

2015		J.J. Kelu, H.L.H. Chan, S.E. Webb, A.H.H. Cheng, M. Ruas, J. Parrington, A. Galione, A.L. Miller *	Two-pore channel 2 activity is required for slow muscle cell- generated Ca ²⁺ signaling during myogenesis in intact zebrafish. <i>Int. J. Dev.</i> <i>Biol.</i> 59: 313-325.	2018	Yes	Yes	Yes
2015		M. Barnes, G. van Rensburg, W.M. Li, K. Mehmood, S. Mackedens ki, C.M. Chan, D.T. King, A.L. Miller , C.H. Lee*	Molecular insights into the coding region determinant -binding protein- RNA interaction through site- directed mutagenesi s in the heterogene ous nuclear ribonucleop rotein-K- homology domains. J. Biol. Chem. 290:625- 639.	2015	No	Yes	Yes
2015		C.M. Chan, Y. Chen, T.S. Hung, A.L. Miller , A.M. Shipley, S.E. Webb *	Inhibition of SOCE disrupts cytokinesis in zebrafish embryos via inhibition of cleavage furrow deepening. <i>Int. J. Dev.</i> <i>Biol.</i> 59: 289-301.	2018	Yes	Yes	Yes

		2018	C. Dedic, T.S. Hung, A.M. Shipley, A. Maeda, T. Gardella, A.L Miller , P. Divieti Pajevic, J.G. Kunkel, A. Rubinacci*	Calcium fluxes at the bone/plasm a interface: acute effects of parathyroid hormone (PTH) and targeted deletion of PTH/PTH- related peptide (PTHrP) receptor in the osteocytes. <i>Bone</i> (under newiny)	2018	Yes	Yes	No
		2018	L. Yang, S.E. Webb, N. Jin, H.M. Lee, T.F. Chan, G. Xu, J.C.N. Chan, A.L. Miller*, R.C.W. Ma*	Characteriz ation of the key role of dachshund b in the developme nt of the pancreatic islet in zebrafish (Danio rerio) Manuscript in preparation	2018	Yes	Yes	No

		2018		S.E.	Investigatin	2018	Yes	Yes	No
				Webb*, J.J.	g the role of				
				Kelu, A.L.	two pore				
				Miller	channel 2				
					(TPC2) in				
					zebrafish				
					neuromusc				
					ular				
					developme				
					nt.				
					Invited				
					review in				
					CRC				
					Methods in				
					Signaling				
					Transductio				
					n Series				
					entitled				
					"Ion and				
					Molecule				
					Transport				
					in				
					Lysosomes				
					(Under				
_					Review).				
_			2018	J.T. Hung,	<i>Review).</i> Investigatin	2018	Yes	Yes	No
_			2018	J.T. Hung, S.E. Webb,	<i>Review).</i> Investigatin g the role	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo,	<i>Review).</i> Investigatin g the role played by	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak,	<i>Review).</i> Investigatin g the role played by the	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M.	<i>Review).</i> Investigatin g the role played by the elasmoid	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A.	<i>Review).</i> Investigatin g the role played by the elasmoid scales of	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci,	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G.	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i>	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel,	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L.	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r fluid/plasm	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r fluid/plasm a Ca ²⁺	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r fluid/plasm a Ca ²⁺ levels. (<i>Working</i>)	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r fluid/plasm a Ca ²⁺ levels. (<i>Working</i> <i>nanar</i>)	2018	Yes	Yes	No
			2018	J.T. Hung, S.E. Webb, C. Palumbo, A. Lesniak, A.M. Shipley, A. Rubinacci, J.G. Kunkel, A.L. Miller*	<i>Review).</i> Investigatin g the role played by the elasmoid scales of zebrafish (<i>Danio</i> <i>rerio</i>) in the short-term homeostatic regulation of extracellula r fluid/plasm a Ca ²⁺ levels. (<i>Working</i> <i>paper</i>)	2018	Yes	Yes	No

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper*. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Voor/	Title	Conforma Norma	Submitted	Attachad	Astronuladaad	Accessible
Dlaga	The	Conference Name			Acknowledged	Accessible
Place			lo RGC		the support of	in atituti an al
			(indicate the	report	this joint	institutional
			of the	(res or no)	Research	(Ver, an Ma)
			oj ine relevant		Scheme	(Yes or No)
			progress		(Yes or No)	
			report)			
October	Identification of Ca ²⁺	20 th Ca ²⁺ Binding	2018	Yes	Yes	No
2017 /	signaling	Proteins and Ca ²⁺				
Awaii.	components in	Function in Health				
Japan	proliferating and	and Disease				
F	differentiating	conference				
	neurospheres derived	(CaBP20)				
	from primary neural	(002120)				
	stem cells isolated					
	from the zebrafish					
	brain					
October	TPC2-mediated Ca ²⁺	20 th Ca ²⁺ Binding	2018	Yes	Yes	No
2017 /	signaling is required	Proteins and Ca^{2+}	2010	105	105	110
Awaii	for the establishment	Function in Health				
Ianan	of synchronized	and Disease				
Jupun	connectivity within	conference				
	the zebrafish	(CaBP20)				
	embryonic spinal	(CuDI 20)				
	circuitry					
October	TPC2-mediated Ca^{2+}	20 th Ca ²⁺ Binding	2018	Yes	Yes	No
2017 /	signaling is required	Proteins and Ca^{2+}	2010	105	105	110
Awaii	for the development	Function in Health				
Ianan	of slow muscle cells	and Disease				
Jupun	in zebrafish	conference				
	embryos	(CaBP20)				
October	Investigation of the	$20^{\text{th}} \text{ Ca}^{2+} \text{ Binding}$	2018	Ves	Ves	No
2017 /	role of Ca^{2+} signaling	Proteins and Ca^{2+}	2010	105	105	110
Awaii	during early	Function in Health				
Tanan	embryonic heart	and Disease				
Japan	development in	conference				
	zebrafish	$(C_{3}BP20)$				
October	Investigating the use	The 9 th Zebrafish	2018	Ves	Ves	No
2016/	of zebrafish as a	Disease Models	2010	105	105	110
Singapore	model to study	Conference				
Singapore	glioblastoma	Contenence				
	multiforme					
	Identification of the					
	Ca^{2+} signaling toolkit					
	components that					
	regulate the self					
	renewal and					
	differentiation of					
	neural stam calla					
	isolated from the					
	brain of adult fish					
1	IDTATE OF ACUTELIST.	1	1	1	1	1

July 2016/	TRPC3 appears to	The 11 th	2018	Yes	Yes	No
Zunyi,	play a dual role in	Symposium on				
China	inducing mouse	Calcium Signaling				
	embryonic stem cells	in China (SCSC)				
	to differentiate along					
	a neuronal lineage as					
	well as supporting					
I. 2016/	cell survival	.	2010	* 7	* 7	
June 2016 /	An investigation of	International	2018	Yes	Yes	NO
San	the role of TRPC3 in	Society for Stem				
Francisco,	the neural	Cell Research				
USA	differentiation of	(ISSCK)				
	mouse embryonic					
N. 2016/	stem cells (ESCs).	ard M	2010	X 7	37	N7.
May 2016 /	Store-operated Ca ²⁺	3 rd Macau	2018	Yes	Yes	NO
Macau	entry (SOCE) via	Symposium on				
	TRPC3 is required	Biomedical				
	for cell proliferation,	Sciences 2016				
	differentiation, and					
	survival of					
	Soul CED 46C					
	SOXI-GFP 46C					
	mouse embryonic					
	stem cens (mescs)					
	as well as those					
	differentiation					
May 2016 /	An exploration of the	3 rd Macau	2018	Vac	Vas	No
Macau	molecular	Symposium on	2018	105	105	NO
wiacau	components of the	Biomedical				
	Ca^{2+} signaling toolkit	Sciences 2016				
	that regulate the self-	Sciences 2010				
	renewal and					
	differentiation of					
	neural stem cells					
	isolated from the					
	brain of adult					
	zebrafish.					
May 2016 /	Morphometric	3 rd Macau	2018	Yes	Yes	No
Macau	analysis of human	Symposium on				
	embryonic stem cell-	Biomedical				
	derived ventricular	Sciences 2016				
	cardiomyocytes:					
	Determining the					
	maturation state of a					
	population by					
	quantifying					
	parameters in					
	individual cells.			<u> </u>		
May 2016 /	Expression and	3 rd Macau	2018	Yes	Yes	No
Macau	reconstitution of the	Symposium on				
	bioluminescent Ca ²⁺	Biomedical				
	reporter, aequorin, in	Sciences 2016				
	human embryonic					
	stem cells.					

October 2015/ Hong Kong	The role of Ca ²⁺ signaling in the onset and progression of glioblastoma multiforme.	Hong Kong - San Diego Workshop on Signaling	2018	Yes	Yes	No
October 2015/ Hong Kong	Investigating the orchestration of FGF/BMP/Ca ²⁺ signaling in regulating neurogenesis of mouse embryonic stem cells (mESCs).	Hong Kong - San Diego Workshop on Signaling	2018	Yes	Yes	No
June/2015/ Oslo	Two-pore channel 2 activity is required for slow muscle cell generated Ca ²⁺ signaling during myogenesis in intact zebrafish.	9 th European Zebrafish Meeting	2015	No	Yes	No
June/2015/ Maine	TRPC1 and DHPR- sensitive Ca ²⁺ channels play a role in early neurogenesis in <i>Xenopus laevis</i> embryos.	Gordon Research Conferences on Calcium Signalling: Molecular and Cellular Mechanisms in Health and Disease	2015	No	Yes	No
June/2015/ Maine	Investigating the orchestration of FGF/BMP/Ca2+ signaling in regulating neurogenesis of mouse embryonic stem cells (mESCs).	Gordon Research Conferences on Calcium Signalling: Molecular and Cellular Mechanisms in Health and Disease	2015	No	Yes	No
May/2015/ Hong Kong	Role of two-pore channel 2 activity in generating slow muscle cell Ca ²⁺ signals during myogenesis in intact zebrafish.	Hong Kong Inter- University Postgraduate Symposium on Life Science 2015	2015	No	Yes	No
May/2015/ Hong Kong	The zebrafish scale: A potential model for studying Ca ²⁺ homeostasis in vertebrates.	Hong Kong Inter- University Postgraduate Symposium on Life Science 2015	2015	No	Yes	No

May/2015/ Hong Kong	Investigating the role of XTRPC1 and XBMPRII in regulating Ca ²⁺ signaling events during neural induction in <i>Xenopus</i> <i>laevis</i> .	Hong Kong Inter- University Postgraduate Symposium on Life Science 2015	2015	No	Yes	No
Jan/2015/ Hong Kong	The orchestration of FGF/BMP/Ca ²⁺ signaling in regulating neurogenesis of mouse embryonic stem cells (mESCs).	The Croucher Foundation ASI on Stem Cells: Biology and Applications	2015	No	Yes	No
Nov/2014/ Suzhou	The zebrafish scale as a possible model for studying mammalian bone/plasma Ca ²⁺ exchange.	Cold Spring Harbor Asia Conference: Bone and Cartilage: From Development to Human Diseases	2015	No	Yes	No
Nov/2014/ Suzhou	The zebrafish scale: a model for studying the molecular regulation of mammalian bone/plasma Ca ²⁺ exchange: the immediate bone wounding response; and bone regeneration and repair.	Cold Spring Harbor Asia Conference: Bone and Cartilage: From Development to Human Diseases	2015	No	Yes	No
Sept/2014/ Aix-en- Provence	Knock-down and rescue of TPC2- mediated Ca ²⁺ signaling required for myofibrillogenesis in zebrafish slow muscle cells.	13 th International Meeting of the European Calcium Society	2015	No	Yes	No
Sept/2014/ Aix-en- Provence	An exploration of Ca ²⁺ signaling during heart development in zebrafish	13 th International Meeting of the European Calcium Society	2015	No	Yes	No

Sept/2014/ Aix-en- Provence	Early neurogenesis in the amphibian requires the activation of TRPC1	13 th International Meeting of the European Calcium Society	2015	No	Yes	No
	channels					
June/2014/ Hong Kong	The zebrafish scale as a possible model for studying bone / plasma Ca ²⁺ exchange.	Hong Kong InterUniversity Biochemistry Postgraduate Symposium 2014	2015	No	Yes	No

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
			submission/
			graduation
LEUNG Ho Chi	MPhil	1 st Feb, 2014	31 st Jan, 2016
CHAN Yin Seng	MPhil	1 st Feb, 2013	2 nd Feb 2015
Harvey			
HUNG Tin Shing	MPhil	2 nd Sept 2013	28 th Jul 2016
KELU Jeffrey Jenkin	PhD	1 st Sept 2014	28 th Aug 2017

11. Other impact (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.)

During the course of this project, we maintained ongoing collaborations with:

Prof Antony Galione (Dept. Pharmacology, Oxford University, UK)
Dr John Parrington (Dept. Pharmacology, Oxford University, UK)
Prof. David Whitmore (Dept. Cell and Developmental Biology, University College, London, UK)
Profs Bernard and Christine Thisse (Dept. Cell Biology, University of Virginia, VA, USA)
Dr Robert Baker (Dept. Physiology & Biophysics, NYUMC, New York, USA)
Drs Marc Moreau and Catherine Leclerc (CNRS, University Paul Sabatier, Toulouse, France)

In addition, we initiated new collaborations with:

Dr Jacques Haiech (University Louis Pasteur, Strasbourg, France)

Dr Hervé Chneiweiss (University Paris Descartes, Paris, France)

Dr Marie-Claude Kilhoffer (University Strasbourg, France)

Dr Jianbo Yue (Department of Medical Sciences, CityU, Hong Kong)

Prof. Juliana Chan and Dr. Ronald Ma (Hong Kong Institute of Diabetes and Obesity, CUHK, Hong Kong)

Dr Chevonne Angus (NAFC Marine Centre, University of Highlands and Islands, Scotland, UK) Prof. Kenneth Boheler and Dr Ellen Poon (SCRMC, HKU, Hong Kong)

Dr Marko Horb (National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA)

Prof. Claudio Alonso (School of Life Sciences, University of Sussex, UK)