RGC Ref.: A-HKU712/14 (please insert ref. above)

The Research Grants Council of Hong Kong ANR/RGC Joint Research Scheme Completion Report

(Please attach a copy of the completion report submitted to the ANR by the French researcher)

Part A: The Project and Investigator(s)

1. Project Title (ANR Acronym)

Pattern Formation in Bacterial Colonies: from Theoretical Physics to Synthetic Biology

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	French Team
Name of Principal	Professor Jiandong Huang	Dr. Julien Tailleur
Investigator (with title)		
Post	Professor	Chargé de Recherche 1ère
		classe
		Senior Research Scientist
Unit / Department /	School of Biomedical	CNRS, Université
Institution	Sciences,	Paris-Diderot
	The University of Hong Kong	
Contact Information	jdhuang@hku.hk	julien.tailleur@univ-paris-did
		erot.fr
Co-investigator(s)		
(with title and		
institution)		

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (must be quoted)
Project Start date	Jan.1, 2015	Jan.1, 2015	
Project Completion date	Dec.31, 2018	Sept. 30, 2019	Nov. 20, 2018
Duration (in month)	48 months	57 months	
Deadline for Submission of Completion Report			

Part B: The Completion Report

- 5. Project Objectives
- 5.1 Objectives as per original application

ANR/RGC 8 (Revised 01/18)

- 1. To fully characterize the mechanism leading to circular patterns in bacterial colonies where the motility of each cell is enslaved to the local density of bacteria
- 2. To study how interactions between bacteria, which affect the spatial distribution of the bacterial colony, interplay with phenotypic and genotypic segregation

·	
Date of approval from the RGC:	

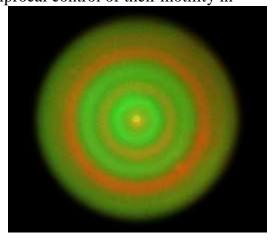
Reasons for the change:

5.2 Revised Objectives

1. 2.

3.

6. Research Outcome


Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

There are two major outcomes of the project. One is on pattern formation. Pattern formation, as one of the most remarkable features of life, describes the reliable and recurrent generation of orderly structures or patterns. As early as 1952, Alan Turing, known as the father of modern computer science, proposed the "reaction-diffusion"

model to explain those naturally occurring biological patterns, which opened up a long studying process of this topic. The most crucial feature of pattern formation is its self-organization, by which biological systems can develop spatial patterns autonomously without any pre-existed positional information. At the cellular and population level, it mounts to how different cell types assume specified distribution in space and time through cell differentiation, proliferation, and migration. Studying pattern formation and clarifying their regulatory mechanisms are crucial to the understanding of important biological processes such as embryogenesis and morphogenesis. However, in most biological systems, the overwhelming complexity makes elucidating any underlying pattern forming process a challenge in the absence of any guiding principles.

Instead of natural living systems, we team worked with artificial living systems which are engineered built by synthetic biology. Using *E. coli* as a model organism, they fabricated signaling pathways built synthetic "quorum sensing" circuits to allow between two types of cells, which allow them to populations with a reciprocal control of their motility in

response to the local cell density of their counterpart population. When the two cell populations are programmed to enhance the motility of each other and seeded as a cell mixture on a semisolid agar plate, the initially well-mixed cell populations tend to segregate and form an orderly stripe pattern in which two cell types forms alternatively appeared as concentric rings (out of phase, see the picture on the right). By re-designing the synthetic signaling pathways, we also programmed two cell populations to suppress the motility of each other. Interestingly, the

mixture also autonomously developed periodic rings, however, this time, the two cell types tend to always form the concentric rings in phase colocalized in the rings. The research team further established a theoretical model to decipher the mechanisms of the observed pattern formation processes. Simulation of the model produced similar ring patterns that both qualitatively and quantitatively agreed with the experiments. The results have been published.

Agnese I. Curatolo*, Nan Zhou*, Yongfeng Zhao*, Chenli Liu, Adrian Daerr, Julien Tailleur † and Jian-Dong Huang † (2020) Cooperative pattern formation in multi-species bacterial colonies. Nature Physics (article) (Received 28 September 2018, Accepted 04 June 2020, Published 24 August 2020) (* equal contribution; † co-corresponding author) (IF= 21.797, (2018)) DOI: https://doi.org/10.1038/s41567-020-0964-z

bioRxiv: http://biorxiv.org/cgi/content/short/798827v1

DOI: https://doi.org/10.1101/798827:

The second outcome is on bacterial movement. The survival strategies of *Escherichia coli* are controlled by their run-and-tumble 'gait'. While much is known about the molecular mechanisms of the bacterial motor, quantifying the motion of these microorganisms in three dimensions has remained challenging. We propose a high-throughput method, using differential dynamic microscopy and a renewal theory, for characterizing the run-and-tumble behavior of a population of *E. coli*. We demonstrate the potential of our method by relating, for the first time, molecular

properties of the motor to the dynamics of engineered *E. coli* mutants. It therefore lays the foundation for future studies on gait-related phenomena in different microorganisms. The results have been summarized and submitted.

 Christina Kurzthaler, Yongfeng Zhao, Nan Zhou, Jana Schwartz-Linek, Clemence Devailly, Jochen Arlt, **Jian-Dong Huang**, Wilson C. K. Poon, Thomas Franosch, Julien Tailleur, and Vincent A. Martinez (2020) Quantitative Characterization of the Run-and-Tumble Dynamics of E. coli. **Physical Review Letters** (submitted)

Potential for further development of the research and the proposed course of action (maximum half a page)

The development of a mature organism from a single cell is a complicated but orderly process. During the process, diverse cell types are differentiated and coordinate to form regular body layouts spatiotemporally. For example, in zebrafish, different types of pigment cells are accurately aligned to form colored stripes. In past studies, food competition, chemotaxis and other mechanisms have been proven to play important roles in self-organization of different biological systems, such as cell-cell adhesion et al. "Our study shows reciprocal control of motility to be a novel self-organization pathway and a general pattern formation mechanism in multicellular systems. This pattern forming mechanism explains how different cell populations could spontaneously colocalize or segregate in space and time without the guidance of any predetermined positional information or man-made interference, which is a prerequisite of the formation of more complex biological patterns and structures This finding may inspire us to check if such mechanism is at play in the pattern formation of motile cells in nature. From an engineering view, it could provide a guiding principle for tissue engineering and regenerative medicine the design and construction of artificial multicellular systems in the future.

7. The Layman's Summary

(describe in layman's language the nature, significance and value of the research project, in no more than 200 words)

Living organisms exhibit amazing patterns or structures during development, such as stratified cell layers during early embryogenesis, animal skin patterns composed of different pigment cells, etc. Understanding how these patterns or structures are formed remains a fundamental scientific question. We studied pattern formation in synthetic artificial multicellular systems. Combining experimental biology and theoretical work physics, the study identified the reciprocal control of motility to be a general mechanism for biological pattern formation and self-organization of different cell types, providing new insights into development. The findings are now published in Nature Physics.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project (Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

ANR/RGC 8 (Revised 01/18)

Year of	Year of	Under	Under	(bold the	Journal/Book	d to RGC	to this	the support of
	Acceptance	Review	Preparation	1	(with the	(indicate	report	this Joint
	(For paper			belonging to	volume, pages	the year	(Yes or	Research
	accepted		(optional)	the project	and other	ending of	No)	Scheme
	but not yet			teams <u>and</u>	necessary	the	,	(Yes or No)
	published)			denote the	publishing	relevant		(
					details specified)			
				author with an asterisk*)		report)		
2015					Pressure and		Yes	yes
2013				J.	Phase		103	yes
					Equilibria in			
					Interacting			
				Wittkowski,				
				· · · · · · · · · · · · · · · · · · ·	Brownian			
				Y. Kafri, M.				
				,	Physical			
				Tailleur	Review			
					Letters 114,			
2017					198301			
2015				A. P. Solon,	"Flocking with		Yes	yes
				J. Tailleur,	discrete			
					symmetry: The			
					two-dimension			
					al active Ising			
					model", Phys. Rev. E 92,			
					042119			
2015				A. P. Solon,	"Pattern		Yes	yes
2015				JB. Caussin,			105	yes
					flocking			
				H. Chate, J.	models: A			
				Tailleur,	hydrodynamic			
				,	description",			
					Phys. Rev. E			
					92, 062111			
2016				N. Nikola, A.	"Active		Yes	Yes
				P. Solon, Y.	particles on			
				Kafri, M.	curved			
				Kardar, J.	surfaces:			
				Tailleur, R.	Equation of			
				Voituriez,	state, ratchets,			
					and			
					instabilities",			
					Phys. Rev.			
					Lett. V117(9),			
					PP 098001			

2016		Nikolai	Active	Yes	Yes
		Nikola,	Particles with		
			Soft and		
		Solon, Yariv	Curved Walls:		
		Kafri,	Equation of		
		Mehran	State, Ratchets,		
		Kardar,	and		
		Julien	Instabilities		
		Tailleur, and	PRL 117,		
		Raphaël	098001		
		Voituriez			
2020		Agnese I.	Cooperative	Yes	Yes
		Curatolo,	pattern		
		Nan Zhou,	formation in		
		Yongfeng	multi-species		
		Zhao, Chenli	bacterial		
		Liu, Adrian	colonies.		
		Daerr, Julien	Nature Physics		
		Tailleur and	(article) DOI:		
		Jian-Dong	https://doi.org/		
		Huang	10.1038/s4156		
			7-020-0964-z		
2020		Christina	Quantitative	Yes	Yes
		Kurzthaler,	Characterizatio		
		Yongfeng	n of the		
		Zhao, Nan	Run-and-Tumb		
		Zhou, Jana	le Dynamics of		
		Schwartz-Lin	E. coli.		
		ek, Clemence	(submitted to)		
		Devailly,	Physical		
		Jochen Arlt,	Review Letters		
		Jian-Dong			
		Huang,			
		Wilson C. K.			
		Poon,			
		Thomas			
		Franosch,			
		Julien			
		Tailleur, and			
		Vincent A.			
		Martinez			

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted to	Attached	Acknowledged
Place			RGC	to this	the support of
			*		this Joint
			year ending of	(Yes or No)	Research
			the relevant		Scheme
			progress		(Yes or No)
			report)		<u>'</u>

March	Motility-induced bacterial	APS March Meeting 2017	No	Yes
13–17,	pattern formation in	2017		
	multi-species bacterial			
Orleans,	colonies			
Louisiana				
	Authors:			
	Agnese Curatolo			
	Yongfeng Zhao			
	Nan Zhou			
	Adrian Daerr			
	Jiandong Huang			
	Julien Tailleur			
February	Pattern formation by	the 8th Annual Winter	Yes	yes
•	multi-species bacterial	q-bio conference		Ĭ
Hilton	colonies with programmed	1		
Waikoloa	population-to-population			
Village, The				
Big Island,				
Hawaii,	Jian-Dong Huang			
USA	Jian Dong Haang			
USA				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	l S	Date of thesis submission/ graduation
Dr. Yongfeng Zhao	Ph.D	Nov, 1st, 2012	Nov, 10 th , 2016
Mr. Zhou Nan	Ph.D	Feb.1st, 2014	Jan.31st, 2018

- **11.Other impact** (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.)
 - (a) Talk on synthetic biology by Dr. JD Huang by Phoenix TV Trendy Guide Interview (完全时尚手冊邀访) (Interview on February 1, 2015, broadcasted on February 5, 2015), Phoenix Satellite Television Company Limited, No. 2-6 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong, China 香港新界大埔大埔工業村大景街2-6號 鳳凰衛視

(http://v.ifeng.com/fashion/focus/201502/0122781e-c92b-4299-9da0-961cf8dd11ba.s html)

- (b) Invited seminars on synthetic biology:
- 1. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (March 26, 2015), Xiamen University, Xiamen, China.
- 2. "Synthetic Patterns: Sequential Establishment of Stripe Patterns in an Expanding Cell Population", (December 17, 2015), Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, Scotland, UK

- 3. "Synthetic Patterns: Sequential Establishment of Stripe Patterns in an Expanding Cell Population", (December 18, 2015), SynthSys Centre, the School of Biological Sciences at the University of Edinburgh, Edinburgh, UK
- 4. "How to make a biological structure? Sequential establishment of stripe patterns in an expanding cell population", (January 22, 2015), G02, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, School of Biomedical Sciences, Chinese University of Hong Kong
- 5. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (March 9, 2016), Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- 6. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (March 10, 2016), New York University Shanghai Campus, Shanghai, China.
- 7. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (May 2, 2016), Institute of Cardiometabolism And Nutrition, Hopital de la Pitie Salpetriere, Salle 012, RDC, 91 boulevard de l'hôpital, Paris, France
- 8. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (July 18, 2016), The Sanger Seminar Room, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (November 14, 2016), Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- 10. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers in Pets", (November 30, 2016), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- 11. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (January 12, 2017), Department of Chemistry, Fudan University, Shanghai, China
- 12. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (January 13, 2017), Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, Shanghai, China
- 13. "Engineering Bacteria to attack cancer", (March 13, 2017), The Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- 14. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers in Pets", (May 16, 2017), CIB-CSIC, Ramiro de Maeztu, 9, 28040-Madrid, Spain
- 15. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers in Pets", (May 22, 2017), Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- 16. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers in Pets", (July 5, 2017), Cardiff University, Cardiff, UK
- 17. "Engineering bacteria to form biological structures and to attack cancer", (January 26, 2018), Donnelly Centre (CCBR), University of Toronto, Toronto, Ontario, Canada
- 18. "Engineering bacteria to form biological structures and to attack cancer", (March 14, 2018), Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai China

- 19. "Engineering Bacteria to Form Biological Structures and to Attack Cancer", (April 19, 2018), Institute for Academic Medicine, Houston Methodist Research Institute, Weill Cornell Medical College of Cornell University, Houston, Texas, USA
- 20. "Engineering Bacteria to Form Biological Structures and to Attack Cancer", (June 22, 2018), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street | Manchester, M1 7DN, United Kingdom
- 21. "Engineering Bacteria to Form Biological Structures and to Attack Cancer", (June 29, 2018), Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
- 22. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (September 19, 2018), 中国农业科学院兰州畜牧与兽药研究所, Lanzhou, China
- 23. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (October 9, 2018), 南京军区总医院, Nanjing, China
- 24. "Engineering Bacteria to Reveal Biological Principles and to Target Tumors", (October 13, 2018), 粤港澳大灣區轉化醫學聯盟成立大會。廣州, China
- 25. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers", (December 18, 2018), 中国北京 北京医院 老年医学研究所
- 26. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers", (January 25, 2019), Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
- 27. "Engineering bacteria to form biological structures and to attack cancer", (March 12, 2019), School of Life Sciences, Nanjing University, Nanjing, China
- 28. "Development of Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors", (March 21, 2019), Department of Biochemical Engineering, University College London, London, the United Kingdom
- 29. "Engineering Bacteria to Reveal Biological Principles and to Treat Cancers", (June 11, 2019), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- 30. "利用合成生物学探索生物图案的形成及开发癌症治疗新方法", (November 26, 2019), 康立明医学检验实验室大会议室(A3栋2层), 广州康立明
- 31. "编码细菌形成图案及治疗肿瘤", (November 27, 2019), 慕恩生物
- 32. "Engineering Bacteria to for Biological Structures and to Attack Cancers", (December 5, 2019), College of Life Sciences and Technology, Huazhong University of Science & Technology, Hongshan District, Wuhan, Hubei Province, China
- 33. "Engineering Bacteria to for Biological Structures and to Attack Cancers", (December 6, 2019), Tong Ji Medical School, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
- **12. Statistics on Research Outputs** (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

ANR/RGC 8 (Revised 01/18)

	Peer-reviewed	Conference	Scholarly books,	Patents awarded	
	journal publications	papers	monographs and chapters		outputs (Please specify)
No of outputs	paoneations		Chapters		(Freuse specify)
No. of outputs arising directly					
from this research	7	2	0	0	0
project					