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Part B:  The Completion Report 

5. Project Objectives

5.1  Objectives as per original application 
1. Spin-ensemble quantum memory for superconducting qubits
2. Understand and improve spin coherence time
3. Quantum simulation of quantum many-body physics based on spin ensembles

5.2 Revised Objectives 
Date of approval from the RGC: 

Reasons for the change:  
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6. Research Outcome

Major findings and research outcome 
    (maximum 1 page; please make reference to Part C where necessary) 

1) Microwave Quantum memory
We constructed and demonstrated a quantum memory based on ensemble spins of bismuth 
donors in silicon and Erbium-doped crystals, coupled to superconducting resonators.  
Well-defined Rabi rotations – Using pulse optimization [4, 7] and shallow implantation to mitigate 
the inhomogeneity of control field, we achieved nearly ideal refocusing pulses [12].  
Characterization by spin spectroscopy – We characterized and understood of the spin spectrum of 
bismuth donors in silicon using EPR spectroscopy with the micro-resonator [5, 6, 13]. We 
measured the local nuclear spin environment by measuring the Electron Spin Echo Envelope 
Modulation (ESEEM), both for bismuth donors in silicon as well as for Erbium ions in a CaWO4 
crystal [11]. In a Bi:Si sample, we observed location-dependent spin decoherence due to the 
local strain [13]. 
Long coherence times (300 ms) were observed by measuring bismuth donor spins at a clock [9,13], 
the longest coherence time reported for electron spins in a nanostructure. We have also 
performed a systematic coherence time study of Erbium-doped CaWO4 for various 
temperatures and doping concentrations [12]. 
Long-term storage of quantum microwave fields - We demonstrated the storage of quantum 
microwave fields in an ensemble of bismuth donors in silicon biased at a clock transition, for up 
to 100ms, and retrieved with a 10-3 efficiency, which is an improvement of storage time over the 
previous state-of-the-art by 3 orders of magnitude. 
2) Ultra-high sensitivity EPR spectroscopy
Related results were obtained on improving the sensitivity of EPR spectroscopy using 
superconducting resonators and amplifiers. First, we used optimized resonator geometry to 
push the spin detection volume as low as femtoliters [2,10]. Then, we also did an experiment 
demonstrating that using quantum squeezing it is possible to push the sensitivity beyond the 
limit imposed by vacuum fluctuations of the microwave field [3]. 
3) Modified cluster-correlation expansion (CCE) and real-space renormalization theory
We developed a modified CCE theory for decoherence of clock-transitions in spin baths. The numerical 
simulation shows that the modified CCE converges rapidly for the CTs. The method can also be 
applied to other important problems such as the decay of Rabi oscillations and rotary echo [14]. 
CCE theory at the ultra-long timescales - Usually the cluster expansion theories fail with 
decreasing temperature in thermodynamics or increasing time in dynamics due to the emerging 
of larger clusters. We discovered surprisingly that the 2nd order CCE, if an effective dissipation 
rate is considered for the cluster correlation, reproduces very well the experimental data. We 
found that the higher-order correlations amount to a renormalized frequency (including both 
real and imaginary parts) of the CCE-2 processes [16]. 
Quantum tensor network theory for spin baths with long-range correlations - For qubit decoherence in 
long timescales or in relatively small spin baths, an interesting question is the growth of 
long-range correlations. The theoretical description of the long-range correlations, however, is 
challenging. The CCE method fails to account for the long-range correlation. We formulated a 
real-space renormalization method particularly suitable for studying the dynamics of random 
quantum networks and hence for studying qubit decoherence in such baths. The method is 
based on a quantum tensor network description of the states of the baths. Comparison between 
exact numerical solutions and the tensor network method demonstrates a promising theory 
[15]. 
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Potential for further development of the research and the proposed course of action 
(maximum half a page) 

The real-space renormalization theory for spin bath dynamics based on quantum tensor 
networks provides a natural identification of “nodes” in a complex quantum spin network 
(as the nodes of the tree tensor network that simulates the spin bath). We expect further 
theoretical and experimental studies can develop new methods to control the bath dynamics 
more efficiently using the manipulation of the node spins. For example, the correlation 
growth and the entanglement propagation in a spin bath can be controlled by flip-flopping 
only one or a few node spins. The tensor network formalism may also be used for 
machine-learning some small spin networks, which is useful for quantum memory and 
small-scale quantum computing. 

7. The Layman’s Summary
(describe in layman’s language the nature, significance and value of the research project, in
no more than 200 words)

A quantum computer consists of quantum bits, on which complex quantum states 
manipulation are performed. Because quantum states collapse in realistic environments, it 
is desirable to store quantum information in a memory with long storage time. The main 
objective of QPISE is to progress towards a quantum memory compatible with 
superconducting quantum processors, a main candidate for quantum computing. 

We build the quantum memory with an ensemble of bismuth donor spins in silicon, 
coupled to a superconducting micro-resonator, which operates at millikelvin temperatures. 
We demonstrated the storage of microwave photons over 100 milliseconds, an 
improvement over the state-of-the-art by 3 orders of magnitude. 

The collapse of quantum states, called decoherence, is the major obstacle in building 
quantum memories. A dominating mechanism of decoherence is the many-body 
interaction in the environments in which the quantum memory is situated. It is therefore 
important to understand the many-body physics for the decoherence of quantum bits. In 
this project, we have constructed quantum many-body theories suitable for studying the 
ensemble spin decoherence in the optimal memory parameter regimes (namely, near 
so-called clock-transitions) and also formulated a real-space renormalization theory for 
calculating spin decoherence in a complex quantum network, using the tensor network 
renormalization. 
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Part C:  Research Output 
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