RGC Ref.: A-CUHK403/15

(please insert ref. above)

The Research Grants Council of Hong Kong ANR/RGC Joint Research Scheme <u>Completion Report</u>

(Please attach a copy of the completion report submitted to the ANR by the French researcher)

Part A: The Project and Investigator(s)

1. Project Title (ANR Acronym)

Quantum Information Processing with Spin Ensembles (QIPSE)

2. Investigator(s) and Academic Department/Units Involved

	Hong Kong Team	French Team
Name of Principal	Renbao Liu, Prof.	Patrice Bertet, Dr.
Investigator (with title)		
Post	Professor, Director of Centre	Researcher
	for Quantum Coherence	
Unit / Department /	Department of Physics, The	Quantronics group, SPEC,
Institution	Chinese University of Hong	CEA Saclay
	Kong	
Contact Information	Tel: +852 -3994 6312	Tel: 0169084567
	Email: rbliu@cuhk.edu.hk	Email: Patrice.bertet@cea.fr
Co-investigator(s)		Denis Vion, Dr.
(with title and		
institution)		

3. Project Duration

	Original	Revised	Date of RGC/ Institution Approval (<i>must be quoted</i>)
Project Start date	1 Mar 2016	N.A.	
Project Completion date	29 Feb 2020	N.A.	
Duration (in month)	48	N.A.	
Deadline for Submission of Completion Report		N.A.	

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

- 1. Spin-ensemble quantum memory for superconducting qubits
- 2. Understand and improve spin coherence time
- 3. Quantum simulation of quantum many-body physics based on spin ensembles

5.2 Revised Objectives

Date of approval from the RGC:

Reasons for the change:

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

1) Microwave Quantum memory

We constructed and demonstrated a quantum memory based on ensemble spins of bismuth donors in silicon and Erbium-doped crystals, coupled to superconducting resonators.

Well-defined Rabi rotations – Using pulse optimization [4, 7] and shallow implantation to mitigate the inhomogeneity of control field, we achieved nearly ideal refocusing pulses [12].

Characterization by spin spectroscopy – We characterized and understood of the spin spectrum of bismuth donors in silicon using EPR spectroscopy with the micro-resonator [5, 6, 13]. We measured the local nuclear spin environment by measuring the Electron Spin Echo Envelope Modulation (ESEEM), both for bismuth donors in silicon as well as for Erbium ions in a CaWO4 crystal [11]. In a Bi:Si sample, we observed location-dependent spin decoherence due to the local strain [13].

Long coherence times (300 *ms*) were observed by measuring bismuth donor spins at a clock [9,13], the longest coherence time reported for electron spins in a nanostructure. We have also performed a systematic coherence time study of Erbium-doped CaWO4 for various temperatures and doping concentrations [12].

Long-term storage of quantum microwave fields - We demonstrated the storage of quantum microwave fields in an ensemble of bismuth donors in silicon biased at a clock transition, for up to 100ms, and retrieved with a 10⁻³ efficiency, which is an improvement of storage time over the previous state-of-the-art by 3 orders of magnitude.

2) <u>Ultra-high sensitivity EPR spectroscopy</u>

Related results were obtained on improving the sensitivity of EPR spectroscopy using superconducting resonators and amplifiers. First, we used optimized resonator geometry to push the spin detection volume as low as femtoliters [2,10]. Then, we also did an experiment demonstrating that using quantum squeezing it is possible to push the sensitivity beyond the limit imposed by vacuum fluctuations of the microwave field [3].

3) Modified cluster-correlation expansion (CCE) and real-space renormalization theory

We developed a modified CCE theory for decoherence of clock-transitions in spin baths. The numerical simulation shows that the modified CCE converges rapidly for the CTs. The method can also be applied to other important problems such as the decay of Rabi oscillations and rotary echo [14].

CCE theory at the ultra-long timescales - Usually the cluster expansion theories fail with decreasing temperature in thermodynamics or increasing time in dynamics due to the emerging of larger clusters. We discovered surprisingly that the 2nd order CCE, if an effective dissipation rate is considered for the cluster correlation, reproduces very well the experimental data. We found that the higher-order correlations amount to a renormalized frequency (including both real and imaginary parts) of the CCE-2 processes [16].

Quantum tensor network theory for spin baths with long-range correlations - For qubit decoherence in long timescales or in relatively small spin baths, an interesting question is the growth of long-range correlations. The theoretical description of the long-range correlations, however, is challenging. The CCE method fails to account for the long-range correlation. We formulated a real-space renormalization method particularly suitable for studying the dynamics of random quantum networks and hence for studying qubit decoherence in such baths. The method is based on a quantum tensor network description of the states of the baths. Comparison between exact numerical solutions and the tensor network method demonstrates a promising theory [15].

Potential for further development of the research and the proposed course of action *(maximum half a page)*

The real-space renormalization theory for spin bath dynamics based on quantum tensor networks provides a natural identification of "nodes" in a complex quantum spin network (as the nodes of the tree tensor network that simulates the spin bath). We expect further theoretical and experimental studies can develop new methods to control the bath dynamics more efficiently using the manipulation of the node spins. For example, the correlation growth and the entanglement propagation in a spin bath can be controlled by flip-flopping only one or a few node spins. The tensor network formalism may also be used for machine-learning some small spin networks, which is useful for quantum memory and small-scale quantum computing.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

A quantum computer consists of quantum bits, on which complex quantum states manipulation are performed. Because quantum states collapse in realistic environments, it is desirable to store quantum information in a memory with long storage time. The main objective of QPISE is to progress towards a quantum memory compatible with superconducting quantum processors, a main candidate for quantum computing.

We build the quantum memory with an ensemble of bismuth donor spins in silicon, coupled to a superconducting micro-resonator, which operates at millikelvin temperatures. We demonstrated the storage of microwave photons over 100 milliseconds, an improvement over the state-of-the-art by 3 orders of magnitude.

The collapse of quantum states, called decoherence, is the major obstacle in building quantum memories. A dominating mechanism of decoherence is the many-body interaction in the environments in which the quantum memory is situated. It is therefore important to understand the many-body physics for the decoherence of quantum bits. In this project, we have constructed quantum many-body theories suitable for studying the ensemble spin decoherence in the optimal memory parameter regimes (namely, near so-called clock-transitions) and also formulated a real-space renormalization theory for calculating spin decoherence in a complex quantum network, using the tensor network renormalization.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

Ref	The	e Latest S		of	Author(s)	Title and Journal/ Book			Acknow	
ere		Publicat			(bold the authors belonging to the		tted to			sible
nce	Year				project teams and denote the	other necessary publishing		d to		from
No.		Accepta			corresponding author with an	details specified)			support	the
	public	nce	Revi	-	asterisk*)				of this	institu
	ation	(For	ew	arati			year		Joint	tional
		paper		on					Researc	reposi
		accepte					of the		h Gl	tory
		d but		(opti				NO)	Scheme	
		not yet		onal)			nt			No)
		publish					progre		No)	
		ed)					SS			
1	2016				C Creary V Keeha D Islamand	Towards a second second la	<i>report)</i> No	V	Yes*	No
1	2016				C. Grezes, Y. Kubo, B. Julsgaard,		INO	res	res*	INO
					T. Umeda, J. Isoya, H. Sumiya,	quantum memory for super-				
					H. Abe, S. Onoda, T. Ohshima,	conducting qubits. Comptes				
					K. Nakamura, I. Diniz, A.	Rendus Physique 17, 693				
					Auffeves, V. Jacques, JF. Roch,					
					D. Vion, D. Esteve, K. Moelmer,					
2	2017				and P. Bertet *		N	37	V v	No
2	2017				S. Probst, A. Bienfait, P. Campagne-Ibarcq, J.J. Pla, B.	Inductive-detection electron-spin resonance	No	res	Yes*	INO
					Albanese, J.F. Da Silva Barbosa,	spectroscopy with 65				
						spins/√Hz sensitivity. Appl.				
					T. Schenkel, D. Vion , D. Esteve, K. Moelmer, J.J.L. Morton, R.	Phys. Lett. 111, 202604				
					Heeres, P. Bertet *	1 llys. Lett. 111, 202004				
3	2017				A. Bienfait, P. Campagne-Ibarcq,	Magnetic Resonance with	No	Vac	Yes*	No
5	2017				A.H. Kiilerich, X. Zhou, S.	Squeezed Microwaves. Phys.	110	105	105	110
					Probst, J. J. Pla, T. Schenkel, D.	Rev. X 7, 041011				
					Vion, D. Esteve, J.J.L. Morton,	Kev. X 7, 041011				
					K. Moelmer, P. Bertet *					
4	2018				Q. Ansel, S. Probst, P. Bertet,	Optimal control of an	No	Yes	Yes*	No
					S.J. Glaser, D. Sugny	inhomogeneous spin ensemble				
						coupled to a cavity, Phys. Rev.				
						A 98, 023425				
5	2018				P. Conti, Z. Zeng, J. J. Pla, P.	Linear Hyperfine Tuning of	No	Yes	Yes*	No
					Bertet, M. W. Swift, C. G. Van	Donor Spins in Silicon Using				
					de Walle, M. L. W. Thewalt, B.	Hydrostatic Strain, J. Mansir,				
					Sklenard, Y. M. Niquet, and	Phys. Rev. Lett. 120, 167701				
					J. J. L. Morton					
6	2018				J.J. Pla, A. Bienfait, G. Pica, J.	Strain-induced spin-resonance	No	Yes	Yes*	No
					Mansir, F.A. Mohiyaddin, Z.	shifts in silicon devices, Phys.				
					Zeng, Y.M. Niquet, A. Morello,	Rev. Appl. 9, 044014				
					T. Schenkel, J.J.L. Morton, and					
					P. Bertet*					
7	2019				S. Probst, V. Ranjan, Q. Ansel, R.		No	Yes	Yes*	No
					Heeres, B. Albanese, E.	compensation in				
					Albertinale, D. Vion , D. Esteve,	quantum-limited electron spin				
					S.J. Glaser, D. Sugny, and P.	resonance spectroscopy,				
					Bertet*	Journal of Magnetic Resonance				
0	2020					303, 42-47	N	NZ	X 7 -	NT
8	2020				A. A. Clerk, K. W. Lehnert, P.		No	Yes	Yes*	No
					Bertet, J. R. Petta & Y.	circuit quantum				
					Nakamura	electrodynamics, Nature				
0	2020					Physics 16, 257	NT	NZ	X 7 -	NT
9	2020				V. Ranjan, J. O'Sullivan, E.	Multimode storage of quantum	NO	Yes	Yes*	No
					Albertinale, B. Albanese, T.	microwave fields in electron				
					Chanelière, T. Schenkel, D. Vion ,					
					D. Esteve, E. Flurin, J. J. L.	Lett. 125, 210505				
					Morton, P. Bertet*					

10	2020			V. Ranjan, S. Probst, B.	Electron spin resonance	No	Yes	Yes*	No
				Albanese, T. Schenkel, D. Vion ,	spectroscopy with femtoliter				
				D. Esteve, J. J. L. Morton, and P.	detection volume, Appl. Phys.				
				Bertet*	Lett. 116, 184002				
1	2020			S. Probst, G. L. Zhang, M.	Hyperfine spectroscopy in a	No	Yes	Yes	No
				Rancic, V. Ranjan, M. Le Dantec,					
				Z. Zhong, B. Albanese, A. Doll,	Magn. Reson., 1, 315–330				
				R. B. Liu , J. J. L. Morton, T.					
				Chanelière, P. Goldner, D. Vion ,					
				D. Esteve, P. Bertet*					_
2			Yes		20-millisecond spin coherence	No	No	Yes	No
				P. Goldner, T. Chanelière, S.	times in an Erbium-doped				
				Bertaina, E. Flurin, D. Esteve, D.	crystal, in preparation (2020)				
				Vion, R. Liu, P. Bertet*					
3		Yes		V. Ranjan, E. Albertinale, E.	Spatially-resolved decoherence	No	No	Yes*	No
				Billaud, C. Zollitsch, T.	of donor spins in silicon				
				Schenkel, J. Morton, J. Pla, D.	strained by a metallic				
				Esteve, D. Vion , E. Flurin, P.	electrode, arxiv:2101.04391,				
				Bertet*	submitted to Phys. Rev. X				
					(2021)				
4	2020			G. L. Zhang, W. L. Ma, and R. B.		No	Yes	Yes	No
				Liu*	for studying decoherence of				
					clock transitions in spin baths,				
					Phys. Rev. B 102, 245303				
5			Yes	Chong Chen and R. B. Liu*	Quantum tensor network	No	No	Yes	No
					theory of central spin				
					decoherence in spin baths, in				
_			3.7		preparation (2021)	NT.	NT	3.7	NT
6			Yes	Sen Lin and R. B. Liu*	Cluster-correlation expansion	No	No	Yes	No
				study of rare earth spin					
				decoherence in the ultra-long					
					timescales, in preparation				
7	2017			Wan Vang Wan Long Mauri	(2021) Deports on Progress in Division	Yes	No	No	No
7	2017			Wen Yang, Wen-Long Ma, and Ren-Bao Liu*		Yes 2018	INO	INO	INO
				Kell-dao Liu*	80, 016001 (2017). Quantum	2018			
				many-body theory for electron spin decoherence in nanoscale					
		1		nuclear spin baths.		1	1	1	

Image: Image:

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (Please attach a copy of each delivered paper. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

Month/Year/	Title	Conference Name	Submitted to	Attached to	Acknowledged	Accessible
Place			RGC (indicate	this report	the support of this	from the
			the year ending	(Yes or No)	Joint Research	institutional
			of the relevant		Scheme	repository
			progress report)		(Yes or No)	(Yes or No)
Jul 2018,	Diamond sensing of the	The 34th International	No	Yes	Yes	No
Montpellier,	phase transition of a single	Conference on the				
France	magnetic nanoparticle and	Physics of				
	criticality-enhanced	Semiconductors				
	nano-thermometry	(ICPS2018)				
Sep 2019,	Decoherence of a rare-earth	Workshop on Impurity	No	Yes	Yes	No
Safed, Israel	spin near the zero	Spins for Quantum				
	first-order Zeeman shift	Information &				
	point	Technologies				
October 2018,	NV center spin	Workshop on Spin	No	Yes	Yes	No
Saclay, France	decoherence at low field	Impurities in Solid for				
	and Overhauser field	Quantum Technologies				
	locking	_				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis submission/ graduation
ZHANG, Gengli	PhD	1 Aug 2015	21 Jun 2020

- **11. Other impact** (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.)
- **12. Statistics on Research Outputs** (*Please ensure the summary statistics below are consistent with the information presented in other parts of this report.*)

	Peer-reviewed journal	Conference papers	Scholarly books, monographs and	Patents awarded	outputs
No. of outputs arising directly from this research project	publications 13	3	chapters 0	0	(Please specify)