RGC Ref.: A-HKUST616/14

(please insert ref. above)

The Research Grants Council of Hong Kong ANR/RGC Joint Research Scheme <u>Completion Report</u>

(Please attach a copy of the completion report submitted to the ANR by the French researcher)

Part A: The Project and Investigator(s)

1. Project Title (ANR Acronym)

Assembly and dynamics of active and passive micro-ellipsoids at a fluid interface

	Hong Kong Team	French Team
Name of Principal	Prof Yilong Han	Prof Maurizio Nobili
Investigator (with title)		
Post	professor	Professor
Unit / Department /	Department of Physics /Hong	Laboratoire Charles Coulomb,
Institution	Kong University of Science	UMR5521 Université
	and Technology	Montpellier 2/CNRS
Contact Information	yilong@ust.hk	maurizio.nobili@umontpellier
		.fr
Co-investigator(s)	Penger Tong, Chair Professor	Christophe Blanc,
(with title and	Department of Physics /Hong	Experienced Scientist
institution)	Kong University of Science	Antonio Stocco, Junior
	and Technology	Scientist
		Martin In, Senior Scientist
		Michel Gross, Senior Scientist
		Laboratoire Charles Coulomb,
		UMR5521 Université
		Montpellier 2/CNRS

2. Investigator(s) and Academic Department/Units Involved

3. **Project Duration**

	Original	Revised	Date of RGC/
			Institution Approval (must be quoted)
Project Start date	Apr.1, 2015	Mar.1, 2015	Jan.23, 2015
Project Completion date	Mar.31, 2019	Feb.28, 2019	
Duration (in month)	48	48	

Deadline for Submission of	Mar. 31, 2020	Feb.28, 2020	
Completion Report			

Part B: The Completion Report

5. Project Objectives

5.1 Objectives as per original application

1. The first objective is the fabrication of ellipsoids and elliptical platelets with tunable sizes, aspect ratios, activity, physico-chemical properties and surface heterogeneities. The fabrication of such particles will be coupled with the interface design by an appropriate choice of the fluids concerned and of the interface curvature in order to control the capillary attraction between particles down to the thermal level. This will allow a major scientific breakthrough as it will open the way to the study of 2D concentrated systems of anisotropic particle without the actual limitation due to the strong capillary attraction.

2. The second objective which concerns anisotropic passive particles, is to investigate the interface breaching dynamics and the 2D particle diffusion dynamics at the interface. To this end at L2C we will develop a new digital holography based on FDTD (Finite-difference time-domain method) applicable to interfaces separating fluids with different optical indices and giving directly the particle position and orientation with respect to the interface. We will further develop the hanging fiber AFM to measure the force during the particle interface breaching.

3. The third objective is to characterize the particle interactions with the fluid interface, its dynamics close to the interface and how these phenomena depend on the particles properties and on the physico-chemistry of the interface. To afford this study an integrated optical system coupling multi-trap optical tweezers and digital holography will be build-up at L2C.

4. The fourth objective is to address the motion of anisotropic active colloids both close to the interface and over the interface in order to quantify the fluctuations of the driving force on the particle due to the interface presence. Such measurements will be the first in the field of active colloids.

5. The fifth objective is to characterize collective behavior, the rotator phase and glassy transitions in concentrated 2D systems of anisotropic particles. Some basic problems will be studied, including the frustration in rotator phase and the novel structural signatures in glass transitions.

5.2 Revised Objectives

Date of approval from the RGC: _____

Reasons for the change: _____

1. 2. 3.

6. Research Outcome

Major findings and research outcome (maximum 1 page; please make reference to Part C where necessary)

We have fabricated various types of ellipsoids and develop some cutting-edge measurement techniques including the digital holography microscopy, interferometry near liquid interfaces and liquid-phase AFM for interfacial force measurement. We measured the tiny force between ellipsoids and air-water interfaces under various conditions and found two novel equilibrium positions with peculiar different dynamics along the tangential and normal directions. We discovered four types of dynamics during the particle approaches to the interface. Some of the experimental observations are explained by our theoretical models, while others need future studies. Besides these results mainly contributed by the French group, we played a major role in the following studies.

"What is the nature of glass transition?" has been ranked as one of the 125 major questions in science by journal "Science". The answer remains elusive after intensive studied. We believe that our results provide a major advance to answer this question, and the manuscript will soon be submitted to Nature Materials. We performed comprehensive experiments under different parameters and found the universal Ising critical behavior for both structure and dynamics at the ideal glass transition point and another critical behavior only for dynamics at the model coupling critical point. Hence it is a thermodynamic transition, while there is another pure dynamic transition at the mode-coupling point. Numerous papers on top journals reported various structure-dynamic relations to demonstrate the thermodynamic nature of the transition, but these features cannot be quantitatively checked and thus are much less convincing than the critical behaviors. Ising critical behavior has only been observed in glassy systems with crystalline patches composed of spheres, thus it is not widely accepted although the publication was ranked as the 20 landmark papers in the 10-year history of Nature Materials. Here we also observed the Ising critical behavior with more analysis methods in systems composed of nonspheres (ellipsoids) without any crystalline structure, hence it provides the convincing evidence of the critical behavior. This work is our represented results in the past 10 years

We developed a new technique of long-needle AFM for measuring the tiny capillary force on the solid particle at the liquid-air interface. We found a universal behavior of the asymmetric speed dependence of force hysteresis and contact line relaxation for different microfibers and fluids, and provided a theoretical understanding (Phys. Rev. E 2017, Langmiur 2017)

In addition, we studied the frustration in a buckled colloid monolayer, and discovered rich glassy dynamics. It provides a novel platform to study the glass dynamics in an ordered structure, and explains the puzzle of the observed glassy dynamics in molecular crystals. The results were published in the top physics journal (Phys. Rev. X 2017). Following the direction of the order-disorder transition, we proposed a rarely asked basic question: how to distinguish a fine-grained polycrystal and glass? Surprisingly we found many features jump at one point, indicating a sharp transition rather than a gradual crossover (Phys. Rev. X. 2018). This study open a new approach to study the poorly explored crossover between ultrafine-grain polycrystal and glass. The results can guide the fabrication of novel ultrafine-grained polycrystals which are often unstable and hard to achieve. Another monolayer glass study by us is the first experimental observation at the free surface of a glass with single-article dynamics using our novel colloidal system (Nat. Comm. 2017); We not only found the surface mobile layer, but also discovered another deeper surface layer with distinct properties from the bulk. The dynamics in colloidal glasses arises form the complex energy landscape. We systematical measured the colloidal

diffusion on a quasicrystalline substrate and showed how the energy landscape affects the diffusion. We further developed two theoretical models to describe the long-time diffusion of the colloidal particles over a quasicrystal lattice (Soft Matter 2017; J. Chem. Phys. 2017, Editor's pick).

Potential for further development of the research and the proposed course of action *(maximum half a page)*

Since all the team members are experimentalists, one future work for theorists is to provide the theoretical understandings of some of our observations, including the second equilibrium positions for a particle near the interface, the mechanisms of the four types of particle dynamics, the mechanism and nature of the polycrystal-glass transition, and the cause of the Ising critical behavior and another dynamic critical behavior.

In our current preliminary experiment, we added a novel dye-induced tunable attractions between ellipsoids and achieved colloidal glasses composed of tunable attractive nonspherical particles for the first time. This system provide a powerful platform for the study of glasses, including the surface behaviors of attractive glasses and the ultrastable glasses (i.e. its melting and vibration mode studies) with the resolution of single-particle dynamics for the first time. These two active topics in glass studies still lack of experiment with the single-particle dynamics.

We developed advanced measurement techniques including the digital holography microscopy, interferometry near liquid interfaces and liquid-phase AFM for interfacial force measurement. They can be applied to various studies about particles at interfaces and force measurement, e.g. near the biological cell membranes.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

We fabricated various types of monodispersed colloidal ellipsoids and measured their motions and forces near or on the liquid-air interfaces. We found novel equilibrium positions near the interface and four types of motions for particles near the interface. We studied dense monolayers of ellipsoids as model systems of glasses and showed that the liquid-to-glass transition exhibits critical behaviors which answers the basic question about the nature of glass transition. It is the first discovery of critical behavior in the rotational motions and two separate critical behaviors during the glass transition. We also discovered glassy dynamics in a buckled colloidal crystal, which can solve the puzzle observed in molecular crystals. We identified the boundary between fine-grained polycrystal and glass for the first time, which bridges the two fields. We also performed the first experiment about the glass surfaces with single-particle dynamics and discovered two surface layers. These results are of fundament importance to glass transition.

We developed novel experiment techniques for the accurate measurements of particles motions and forces near or on the interfaces, which enable to achieve novel experimental results. Moreover, these techniques can be applied to many other studies in the future.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of each publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicat	ions	Author(s)	Title and	Submitted to	Attached	Acknowledged	Accessible
Year of	Year of	Under	Under	(bold the	Journal/ Book	RGC	to this	the support of	from the
publication	Acceptance	Review	Preparation	authors	(with the	(indicate the	report (Yes	this Joint	institutional
	(For paper			belonging to	volume, pages	year ending	or No)	Research	repository
	accepted but		(optional)	the project	and other	of the		Scheme	(Yes or No)
	not yet			teams and depote the	necessary	relevant		(res or No)	
	publishea)			corresponding	details	report)			
				author with an	specified)	i eponi)			
				asterisk*)	1 5 /				
2016				Bo Li, Di	Assembly	2019	Yes	Yes	Yes
				Zhou and	and phase				
				Yilong	transitions				
				Han*	of colloidal				
					crystals				
					(invited				
					review),				
					Nature				
					Reviews				
					Materials.				
					1. 15011				
2016				Feng	Melting of	2019	Yes	Yes	Yes
2010				Wang, Di	colloidal	2019	105	105	105
				Zhou and	crystals				
				Vilong	(invited				
				Hong Hon*	(mvneu review)				
				11411	$\Delta dv Eunct$				
					Mator 26				
					Maler. 20,				
2016				Donashi	8903-8919	2010	Vac	Vac	Vac
2010				Doligshi	Simultaneo	2019	168	168	168
				Guall, Vong Lion	us				
				Tong Jian	observation				
				wang,	01				
				Elisabeth	asymmetric				
				Charlaix,	speed-depe				
				and Penger	ndent				
				1 ong*	capillary				
					force				
					hysteresis				
					and slow				
					relaxation				
					ofa				
					suddenly				
					stopped				
					moving				
					contact				
					line,				
					Physical				
					Review E,				
					94,042802				

2017				Dongshi	Noncontact	2019	Yes	Yes	Yes
				Guan, Chloá	viscoelasti				
				Rorroud	C Maasurama				
				Elisabeth	nt of				
				Charleix	ni oi Polymer				
				and Denger	Thin Films				
				Tong*	in a				
				Tong	li a Liquid				
					Medium				
					Using				
					Long-Needl				
					e Atomic				
					Force				
					Microscopy				
					, Lanomuir				
					33.				
					1385-1390				
2017				Yusheng	Mechanical	2019	Yes	Yes	Yes
				Shen,	Characteriz				
				Dongshi	ation of				
				Guan,	Microengin				
				Daniela	eered				
				Serien,	Epithelial				
				Shoji	Cysts by				
				Takeuchi,	Using				
				Penger	Atomic				
				Tong,*	Force				
				Levent	Microscopy				
				Yobas,* and	,				
				Pingbo	Biophysical				
				Huang*	Journal,				
					112,				
					398–409				
2017				Y. Su,	Colloidal	2019	Yes	Yes	Yes
				XG. Ma,	diffusion				
				PY. Lai	over a				
				and P.	quenched				
				Tong*	two-dimens				
					ional				
					random				
					potential,				
					Soft Matter				
2015					13, 4773	2010	••	••	••
2017				Di Zhou,	Glassy Spin	2019	Yes	Yes	Yes
				Feng	Dynamics				
				Wang, Bo	in				
				Li, Xiaojie	Geometrica				
				Lou, and	lly				
				Yilong	Frustrated				
				Han*	Buckled				
					Colloidal				
					Crystals,				
					Physical				
					Review X ,				
1	1	1	1	1	1,021030				

					-		
2017		Xin Cao,	Release of	2019	Yes	Yes	Yes
		Huijun	free-volum				
		Zhang and	e bubbles				
		Yilong	by				
		Han*	cooperative				
			-rearrange				
			ment				
			regions				
			during the				
			deposition				
			growth of a				
			colloidal				
			glass.				
			Nature				
			Communica				
			tions 8				
			362				
2017		Yun Su	Colloidal	2019	Yes	Yes	Yes
2017		Pik-Yin I ai	diffusion	2017	105	105	105
		Bruce I	over a				
		Ackerson	quasicrystal				
		Xin Cao.	line-pattern				
		Vilong	ed surface				
		Han.	I Chem				
		Penger	Phys 146				
		Tong*	214903				
2018		X. He, Y.	Dynamic	2020	Yes	Yes	Yes
		Wang, and	heterogenei				
		P. Tong*	ty and				
		0	conditional				
			statistics of				
			non-Gaussi				
			an				
			temperature				
			fluctuations				
			in turbulent				
			thermal				
			convection,				
			Phys. Rev.				
			Fluids 3,				
			052401(R)				
			(2018).				
2018		Huijun	Compressio	2019	Yes	Yes	Yes
		Zhang and	n-induced				
		Yilong	polycrystal-				
		Han*,	glass				
			transition in				
			binary				
			crystals,				
			Phys. Rev.				
1	1 1		N Z O	1	1	1	
			Λ, δ,				

2018			Y. Wang,	Boundary	2019	Yes	Yes	Yes
			W. Xu,	layer				
			XZ. He,	fluctuations				
			HF. Yik,	in turbulent				
			XP. Wang,	Rayleigh-B				
			J.	énard				
			Schumacher	onvection,				
			and P.	J. Fluid				
			Tong*	Mech. 840,				
				408				
		2020	Zhongyu	Translation	2019	Yes	Yes	No
			Zheng, Ran	al and				
			Ni, Hanhai	RotationalC				
			Li,	ritical-like				
			Marjolein	Behaviors				
			Dijkstra,	in				
			Yuren	glass-formi				
			Wang* and	ng colloidal				
			Yilong	ellipsoid				
			Han*	monolayers				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each delivered paper*. All listed papers must acknowledge RGC's funding support by quoting the specific grant reference.)

<u>F * F * * *</u>		<u> </u>		0		/
Month/Year	Title	Conference Name	Submitted	Attached	Acknowledged	Accessible
/			to RGC	to this	the support of	from the
Place			(indicate the	report	this Joint	institutional
			year ending	(Yes or	Research	repository
			of the	No)	Scheme	(Yes or No)
			relevant		(Yes or No)	
			progress			
			report)			
April/2015/	Dynamics of Soft	Physics	2019	Yes	Yes	No
Hong Kong	Matter at a	Colloquium,				
	Three-phase Contact	Department of				
	Line	Physics, Chinese				
		University of				
		Hong Kong				
January/201	Glassy spin	CityU-PKU Joint	2019	Yes	Yes	No
6/Hong	dynamics in buckled	Workshop on				
Kong	colloidal crystal	Disorder and				
C C		Disordered				
		Materials				
January/201	Colloidal transport	IAS	2019	Yes	Yes	No
6/HKUST,	and dynamics over	Computational				
Hong Kong	periodic potentials	and Mathematical				
		Problems in				
		Materials Science				
October/201	Assembly of 2D	Dutch-China Soft	2019	Yes	Yes	No
6/Xiamen,	glasses by	Matter Workshop				
China	crystal-to-glass					
	transition and by					
	vapor deposition					

March/2017	Interfacial pinning,	the 10 th National	2019	Yes	Yes	No
/Xiamen,	hysteresis and	Conference on				
China	dynamics of a	Soft Matter and				
	moving contact line	Biophysics				
March/2017	Making glass from	International	2019	Yes	Yes	No
/Osaka,	crystal and vapor	workshop on				
Japan	· ·	glasses and related				
		nonequilibrium				
		systems				
June/2017/S	Compressing crystal	3 rd Conference on	2019	Yes	Yes	No
hanghai,	to glass	Condensed Matter				
China	C	Physics				
July/2017/X	Glassy dynamics in	4 th National	2019	Yes	Yes	No
i'An, China	frustrated spin	Statistical Physics				
	systems	Conforma				
4 /2017/			2010	x 7	* 7	
Aug./2017/	Making glasses from	KITS Workshop:	2019	Yes	Yes	No
Beijing,	vapor and crystal	From supercooled				
China		liquids to glasses				
Jan./2018/H	Critical-like	Physics of	2019	Yes	Yes	No
ong Kong	behaviors and glass	Supercooled				
- 0 - 0	transitions in dense	Liquids Workshop				
	monolayers of	at IAS of CityU				
	colloidal ellipsoids					
Apr./2018/	Compressing binary	Designer Soft	2019	Yes	Yes	No
Singapore	crystals into glasses	Matter Workshop,				
Nov./2018/	Compressing binary	10 th Dyanmics	2019	Yes	Yes	No
Xiamen,	crystals into glasses	Days Asia Pacific				
China		(DDAP10)				
Nov./2018/	Compression	11 th Conference of	2019	Yes	Yes	No
Chongqing,	induced	Soft Matter and				
China	crystal-to-glass	Biophysics				
	transition	Diophysics				
June/2017/	Interfacial pinning,	Soft Matter	2019	Yes	Yes	No
Montpellier/	hysteresis and	Seminar,				
France	dynamics of a	Laboratory				
	moving contact line	Charles Coulomb,				
		University of				
		Montpellier				
May/2018/	Interfacial pinning,	Max Planck	2019	Yes	Yes	No
Schloss	hysteresis and	Workshop on Soft				
Ringberg/	dynamics of a	Matter at				
Germany	moving contact line	Interfaces				
October/201	Interfacial pinning,	International	2019	Yes	Yes	No
8/Bordeaux/	hysteresis and	Conference on				
France	dynamics of a	Liquids at				
	moving contact line	Interfaces in honor				
		of Prof. Elisabeth				
		Charlaix,				

January/201	Colloidal diffusion	2019 Winter	2020	Yes	Yes	No
9/ Hsinchu/	over complex	School on				
Taiwan,	potential landscapes:	Frontiers of				
	From periodic,	Complex Systems				
	quasi-periodic and	Science: Soft				
	random potentials to	matter, biophysics				
	live cell membranes	and statistical				
		physics, National				
		Center for				
		Theoretical				
		Science				

10. Student(s) trained (*Please attach a copy of the title page of the thesis.*)

Name	Degree registered for	Date of registration	Date of thesis
		_	submission/
			graduation
Runzhang XU	M. Phil in Physics	Sept 1, 2014	Aug, 2016
Yun SU	Ph.D. in Physics	Sept 1, 2011	May 31, 2017
Dongshi GUAN	Ph.D. in Physics	Sept 1, 2010	Mar, 2016
Yin Wang	PhD in Physics	Sept 1, 2011	Dec 19, 2017
Chengjie Luo	MPhil in Physics	Sept 1, 2016	Aug 31, 2018
Di ZHOU	M.Phil. in Physics	Sept 1, 2014	Mar. 2017
Hongyang TANG	Joint Ph.D. in Physics a	at Sept.1, 2015	Expected Aug.
	HKUST (Hong Kong)		2020
	and Univ. of		
	Montpellier (France)		
Bo LI	Ph.D. in Physics	Sept.1, 2012	Oct. 2017
Xin CAO	Ph.D. in Physics	Sept.1, 2012	Mar. 2017

11.Other impact (e.g. award of patents or prizes, collaboration with other research *institutions, technology transfer, etc.*)

The PIs and co-PI are experimentalists, thus we collaborated with the theoretical groups in other research institutions, including Prof. Pik-Yin Lai of National Central University in Taiwan, Prof. Bruce Ackerson of the Oklahoma State University in the US, Prof. Elisabeth Charlaix of University of Grenoble in France, and and Prof. Jörg Schumacher of Technische Universität Ilmenau in Germany, and the experimental group of Prof. Yuren Wang and Prof. Zhongyu Zheng in Institute of Mechanics, Chinese Academy of Science.