RGC Reference HKU4/CRF/10 please insert ref. above

The Research Grants Council of Hong Kong Collaborative Research Fund Group Research Projects Completion Report

(for completed projects only)

Part A: The Project and Investigator(s)

1. Project Title

A Multi-disciplinary Approach to Investigate Vascular Dysfunction in Obesity and Diabetes: From Molecular Mechanism to Therapeutic Intervention 對肥胖、糖尿病相關血管病變的跨學科研究:從分子機制到幹預治療

2. Investigator(s) and Academic Department/Units Involved

Research Team	Name/Post	Unit/Department/Institution
Project	Aimin Xu/Professor	Medicine, and Pharmacology &
Coordinator		Pharmacy, HKU
Co-investigator(s)	Yu Huang/Professor	School of Biomedical Sciences, CUHK
	Karen Lam/Professor	Medicine, HKU
	Paul Vanhoutte/Professor	Pharmacology & Pharmacy, HKU
	Yu Wang/Associate	Pharmacology & Pharmacy, HKU
	Professor	
Others	Peter Libby/Professor	Medicine/Harvard Medical School
	Eugene Y Chen/Professor	Cardiovascular Center/University of
		Michigan
	Jianglin Fan/Professor	University of Yamanashi

3. Project Duration

	Original	Revised	Date of RGC Approval
			(must be quoted)
Project Start Date	25/06/2011		
Project Completion Date	24/06/2014		
Duration (in month)	36		
Deadline for Submission	24/03/2015		
of Completion Report			

5. Project Objectives

5.1 Objectives as per original application

1. To study the detailed mechanisms whereby adiponectin prevents endothelial injury induced by obesity and diabetes;

2. To determine the molecular pathways whereby A-FABP mediates endothelial dysfunction and vascular inflammation;

3. To elucidate the roles of adiponectin and A-FABP in the pathogenesis of vascular disease in genetically engineered rabbits;

4. To further evaluate the clinical association of the three adipokines with vascular disease and to explore their prognostic value as biomarkers for risk prediction and early diagnosis in large study cohorts.

5.2 Revised objectives

N.A.

6. Research Outcome

6.1 Major findings and research outcome

(maximum 1 page; please make reference to Part C where necessary)

A. Adiponectin exerts its vascular protective effects via multiple mechanisms: First, adiponectin acts in an endocrine and paracrine manner on endothelial layer of blood vessels to stimulate AMP-activated protein kinase, which in turn protects diabetes-induced endothelial damage by reducing oxidative stress. Such an effect of adiponectin is indispensable for the vascular protective benefits of the anti-diabetic drug rosiglitazone (*see item-1, part-C*). Second, activation of AMPK by adiponectin can also lead to induction of heme oxygenase (HO)-1 and SDF-1, which in turn promotes proliferation and mobilization of endothelial repair (*see item-2, in panel C*). This AMPK-mediated protection of EPC number and functionality represents a key mechanism by which adiponectin prevents diabetes-induced impairment in vascular regeneration. Third, it may suppress the protein kinase CDK5, and subsequently enhances SirT1 activity via dephosphorylation at its NH2-terminus. Increased sirT1 activity in turns prevent age-related endothelial dysfunction and atherosclerosis by blocking premature cellular senescence (see

<u>item-3, part-C</u>). Fourth, adiponectin may also suppress obesity-induced oxidative stress by upregulating uncoupling protein-2 (UCP-2) in endothelial cells (<u>see item-6</u>). Last, the adaptor protein APPL1 serves as an obligatory downstream signaling molecule to mediate the insulin-sensitizing actions of adiponectin, by activation of the protein kinase Akt, which in turn activate eNOS to promote endothelial NO production. In obesity, reduced expression of APPL1 in blood vessels shifts the actions of insulin from Akt to ERK activation, thereby leading to vasoconstriction and endothelial dysfunction (<u>see item-4, part-C</u>). In addition, APPL1 may alleviate diabetes-induced endothelial dysfunction indirectly by coupling insulin actions to insulin secretion in pancreatic β -cells, which in turn maintains glycemic homeostasis (<u>see</u> <u>item-5 & 30</u>). We have made a comprehensive summary on adiponectin signaling pathways in several invited review papers (<u>see items 20, 21, 22, 25, 37</u>)

- B. A-FABP and lipocalin-2 acts as a pro-inflammatory adipokine to link obesity with vascular dysfunction via its actions in both macrophages and endothelial cells. In endothelial cells, A-FABP potentiates toxic lipids-induced suppression of Akt activation, thereby leading to impaired eNOS activity and endothelial NO production (*see item-9*). In macrophages, A-FABP suppresses autophagy and subsequently causes ER stress, which in turn triggers JNK activation and production of pro-inflammatory cytokines (*see item-7*). In addition, A-FABP may potentiate the oxidative stress by upregulating NADPH oxidase isoforms 1 and 4 via TLR4 (*see item#27*). On the other hand, lipocalin-2 induces endothelial dysfunction and causes cardiovascular disease via inhibition of cytochrome P450 2C, disruption of mitochondrial functions and alteration of phospholipid remodeling, and also induction of apoptosis (see items #13, #14, #15 and #35). A-FABP and lipocalin-2, both of which are lipid-binding binding adipokines, are the key mediator that links lipid toxicity with vascular inflammation in obesity (see item #21&23). In both rodents and large animals, we have provided evidence demonstrating that pharmacological inhibition of vascular diseases associated with obesity and diabetes.
- C. Increased circulating levels of A-FABP are an independent predictor for heart failure in a 5-year prospective study in patients with diabetes, and also can be used for prediction of future cardiovascular event in a 12-yearcommunity-based study in Hong Kong. On the other hand, elevated lipocalin-2 in urine samples can be used for early detection of those individuals who are at the high risk of cardiovascular disease [US patent 8030097 (B2), Japanese patent 2011519037 (A)].

In summary, this study unequivocally established the roles of dysregulated adiponectin, A-FABP and lipocalin-2 as an important mediator of vascular dysfunction in obesity and diabetes, and suggests that these adipokines can be used as both biomarkers for early diagnosis and drug target fir therapeutic intervention of cardiovascular diseases. We have published 40 papers and have been awarded with three patents related to this project.

- 6.2 Potential for further development of the research and the proposed course of action *(maximum half a page)*
 - A. <u>Basic and clinical research</u>: During this study, we have made several novel discoveries that deserve further investigation. First, we have identified several novel microRNAs (miR-34a and miR-883b) as regulators of adipokine production and macrophage-mediated inflammation in obese adipose tissue. Furthermore, we have obtained novel evidence showing that the two lipid-binding adipokines (A-FABP and lipocalin-2) are actively involved in promoting M2→M1 polarization of macrophages in obese adipose tissues. Notably, miR-883b is under the control of adiponectin whereas miR-34a controls the production of adipokines. Based on these observations, we believe that the aforementioned microRNAs and adipokines form a complex network to fine-tine the number and polarity of adipose-resident macrophages, and their dysregulation plays important roles in initiating

and/or perpetuating obesity-associated macrophages-mediated metabolic and vascular inflammation We have secured another CRF grant in the 2014/2015 round (grant no C7055-14G, 8,780,000 HKD) to continue our study in both animals and humans.

B. Translational and applied research: Based on the findings from this completed project, we have been awarded with several US and international patents [US 8030097, US 2010310578 (A1)], claiming the use of the adipokines as diagnostic biomarkers and therapeutic targets for cardiovascular diseases. In addition, we have already developed a series of immunoassays for these adipokines via the antibody and immunoassay service (AIS) established by the PI (see www.antibody.hku.hk). We have successfully commercialized these assays for basic and clinical research, clinical diagnostics and high throughput drug screening. Furthermore, we have secured an applied research fund from ITC via University and Industrial matching scheme (UIM/270, 3998000 HKD) to develop chemiluminecence-based assays for these biomarkers to be used for early diagnosis of diabetic vascular complications (in collaboration with Pian Zian Huang Pharmaceutical Company, which was listed in stock market in Mainland China). Our industrial partner will work together with us for obtaining approval for CFDA and for promotion of clinical applications in Mainland China. In addition, Dr. Yu Wang and Prof. Paul Vanhoutte (co-PIs) have secured over 5 million HKD via strategic alliance with Servier (an European drug company) to develop drug candidates by targeting adipokines, taking advantage of the patents, animal models and platforms established in this project.

6.3 Research collaboration achieved (*please give details on the achievement and its relevant impact*)

All our major research outcomes were based on the close collaborations among PI and co-PIs, as evidenced by significant contribution of each investigator to our joint research platform, joint supervision of postgraduate students, joint lab meeting, sharing of research resources, joint publications and joint commercialization activities.

1. We have organized 5 meetings among the PI and co-PIs to discuss the funding allocation and to update the research progress for this project. During the meeting, the PI and co-PIs discussed the detailed plan for collaboration for each study objective.

2. **Joint lab meeting:** The research staff and postgraduate students from A Xu, K Lam, P Vanhoutte and Y Wang's groups held joint lab meeting every two weeks. The joint research meeting and journal club among the research staff from A Xu, Y Wang and PM Vanhoutte's lab were held on a biweekly basis. In addition, lab members from A Xu's group and Y Huang's group at CUHK held joint lab meeting every two months, and the staff/students involved in this project presented their data each time during the joint meeting. We also organized joint conference on last December.

3. Joint supervision of postgraduate students and postdoctoral fellows. We trained 10 RPG (8 Ph.D. and 2 M.Phil.) students during the funding period. There are currently 14 (13 Ph.D. and 1 M.Phil.) students under the joint supervision of the PI and co-PIs, including two students under the joint supervision of A Xu and PM Vanhoutte (Baretella Oliver Marc and Detremmerie Charlotte), four students under the joint supervision of K Lam and A Xu (Lingling Shu, Zhong Ling, Pan Yong and Huang Zhe), four students under the joint supervision of Y Wang and A Xu (Wang Baile, Li Jing, Yan Liang and Liang Yan), and three under the joint supervision of Y Wang, PM Vanhoutte and A Xu (Cheong Lai Yee, Feng Tianshi and Cai Yu). A Xu is also an academic advisor for Y Huang's PhD student (Liu Jian) at CUHK. These students and supervisors met any least once a month to discuss the progress of the research projects related to this study. With the support from this CRF project, PI and four co-PIs at HKU have successfully bided for four postdoctoral fellow positions from the University, and these four postdoctoral fellows (Dr. Di Zhu, Dr. Gu Ping, Dr. Larry Liang and Dr. Ye Dewei) are

currently under the joint supervision of the PI and co-PIs, to facilitate the collaboration between each research group.

4. **Collaborative research activities on applied research related to this project**. With the support from PM Vanhoutte and K Lam, PI has established a HKU antibody and immunoassay service center to commercialize the adipokine-related immunoassay products (www.antibody.hku.hk). Through the close collaboration between PM Vanhoutte, A Xu and Yu Wang, we have established a strategic alliance with Servier (a multi-national drug company based on France) to identify lead compounds that can be potentially used for the treatment of obesity-related cardiometabolic complications by targeting adipokines and adipose-vascular axis. So far, we have been awarded with three contract projects with a total amount of ~15 million HKD.

5. **Joint publications.** All the original publications listed in part C were based on the collaborative work between PI and co-PIs. In all these joint publications, both PI and each co-PI has made genuine contributions. The contribution of each investigator to this project is also evidenced by the fact that both PI and each co-PI have contributed to these joint publications as a senior/corresponding author.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Cardiovascular disease (CVD), including stroke, heart attack and periphery artery disease, is the major cause of death and hospitalization in our rapidly ageing population. Much of the high incidence of CVD is attributed to the rapid rise in the prevalence of obesity and diabetes. Unfortunately, none of the current therapies can reverse the progression of CVD, partly due to a lack of the understanding of the pathogenesis of these chronic diseases. In this study, we have identified several factors secreted from fat tissues that are involved in the early pathogenesis of vascular disease in obesity and diabetes. These adipocyte-secreted factors serve as the important regulators for both systemic energy metabolism and vascular homeostasis, and their dysregulation in obese fat can cause insulin resistance and vascular damage. Furthermore, we have demonstrated that pharmacological or genetic interventions targeting these molecules can prevent vascular diseases associated with obesity and diabetes. These new findings provide scientific base for the future development of non-invasive diagnostic methods for risk prediction and early diagnosis of CVD, and more effective therapeutic interventions that can reverse or cure these chronic diseases by targeting endothelial dysfunction associated with obesity and diabetes.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publica	ations	Author(s) (denote	Title and	Submitted	Attached	Acknowle
Year of	Year of	Under	Under	the corresponding	Journal/Book	to RGC	to this	dged the
publication	Acceptance	Review	Preparation	author with an	(with the volume,	(indicate	report	support of
	(For paper		(optional)	asterisk*)	pages and other	the year	(Yes or	RGC (Yes
	accepted				necessary	ending of	No)	or No)
	but not yet				publishing details	the		
	published)				specified)	relevant		
						progress		
						report)		

2011		Wong WT, Tian	Adiponectin Is	Yes	No	Yes
(Item-1)		XY, Xu A*, Yu J,	Required for	(2012)		
		Lau CW, Hoo R,	PPAR γ -Mediated			
		Wang Y. Lee	Improvement of			
		VW. Lam KSL.	Endothelial			
		Vanhoutte PM.	Function in			
		and Huang V*	Diabetic Mice			
		und Huung T .	Coll Motabolism			
			16.101 15			
2012		I i V. I. om VOI	Endothalium calaa	Vac	No	Vac
2012		LI I, Lalli KSL,	tive Astivation of	(2012)	NO	res
(Item-2)		Tse HF, Chell C,	A MD activation of	(2012)		
		wang	AMP-activated			
		Y, Vannoutte	Protein Kinase			
		PM, and Xu A*.	Prevents			
			Diabetes-induced			
			Impairment of			
			Vascular Function			
			and			
			Re-endothelializati			
			on via Induction			
			of Heme			
			Oxygenase-1 in			
			Mice. Circulation,			
			126: 1267-77			
2012		Bai B, Liang Y,	CDK5-Mediated	Yes	No	Yes
(Item-3)		Xu C, Lee MY,	Hyperphosphoryla	(2012)		
		Xu A, Wu D,	tion of SIRT1			
		Vanhoutte PM*,	Contributes to the			
		Wang Y*.	Development of			
		0	No Endothelial			
			Senescence and			
			Atherosclerosis.			
			Circulation.			
			7:126(6):729-40			
			7,120(0).727 10			
2011		Wang Y, Cheng	APPL1	Yes	No	Yes
(Item-4)		KK, Lam KSL,	counteracts	(2012)		
		Wu D, Wang Y,	obesity-induced			
		Huang Y,	vascular insulin			
		Vanhoutte PM,	resistance and			
		Sweeney G, Li Y,	endothelial			
		Xu A*.	dysfunction by			
			modulating the			
			endothelial			
			production of			
			nitric oxide and			
			endothelin-1 in			
			mice.			
			Diabetes. 60:			
			3044-54			
			-			

2012 (Item-5)	Cheng KK, Lam KSL, Wu D, Wang Y, Sweeney G, Hoo R, Zhang J and Xu A* (<i>Highlighted by a</i> <i>commentary</i>)	APPL1 potentiates insulin secretion in pancreatic beta-cells by increasing Akt-dependent expression of SNARE proteins in mice. PNAS , 109:8919-27	Yes (2012)	No	Yes
2012 (Item-6)	Tian XY, Wong WT, Xu A , Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y , Yao X, Huang Y *	Uncoupling Protein-2 Protects Endothelial Function in Diet-induced Obese Mice. <i>Circ Res.</i> 110: 1211-6	Yes (2012)	No	Yes
2013 (Item-7)	Hoo RL, Lee IP, Zhou M, Wong JY, Hui X, Xu A *, Lam KSL*.	Pharmacological Inhibition of Adipocyte Fatty Acid Binding Protein Alleviates Both Acute Liver Injury and Non-alcoholic Steatohepatitis in Mice. <i>J Hepatol,</i> 58(2): 358-364	Yes (2012)	No	Yes
2012 (Item-8)	Ye D, Li Y, Lam KS, Li H, Jia W, Wang Y, Man K, Li X and Xu A* (<i>Highlighted by a</i> <i>commentary</i>)	TLR4 mediates obesity-induced nonalcoholic steatohepatitis through activation of X-box binding protein in mice. <i>Gut</i> , 61:1058-67	Yes (2012)	No	Yes

2013		Chan C. Laio S	A EABD and	Vac	No	Vas
$(Item_{-}0)$		Zhang V. Lee M	A-I ADI alla	(2012)	NO	103
(nem-y)			underlie the	(2012)		
		Vanhoutte P *	impairment of			
		vannoutte 1	endothelium			
			dependent			
			relevation to			
			serotonin and the			
			noointimal			
			thickening in the			
			noraina aaronami			
			ortory with			
			regenerated			
			andothalium ASC			
			Cham			
			Chem Naurosaianaa			
			$A(1) \cdot 122 \cdot 120$			
			4(1). 122-129			
2013		Liu M, Zhou M,	Circulating	Yes	No	Yes
(Item-10)		Bao Y, Xu Z, Li	adipocyte fatty	(2012)		
		H, Zhang H, Zhu	acid-binding			
		W, Zhang J, Xu	protein levels are			
		A, Wei M*, Jia	independently			
		W*.	associated with			
			heart failure.			
			Clin. Sci.			
			124(2):115-22.			
2013		Chow WS, Tso	Elevated	Yes	No	Yes
(Item-11)		AWK, Xu A,	Circulating	(2012)		
		Yuen MMA,	Adipocyte-Fatty			
		Fong CHY, Lam	Acid Binding			
		TH, Lo SV, Tse	Protein Levels			
		HF, Woo YC,	Predict Incident			
		Yeung CY,	Cardiovascular			
		Cheung BMY*,	Events in a			
		Lam KSL*	Community-based			
			Cohort: A 12-Year			
			Prospective Study			
			JAHA			
			15;2(1):e004176.			
2012		Yuen CY, Wong	From Skeleton to	Yes	No	Yes
(Item-12)		SL, Lau CW,	Cytoskeleton:	(2012)		
		Tsang SY, Xu A,	Osteocalcin			
		Zhu Ž, Ng CF,	Transforms			
		Yao X, Kong SK,	Vascular			
		Lee HK, Huang	Fibroblasts to			
		Y*.	Myofibroblasts			
			Via Angiotensin II			
			and Toll-Like			
			Receptor 4.			
			Circ Res.			
			11(3):e55-66			

2012 (Item-13)	Xu G, Ahn J, Chang S, Eguchi M, Ogier A, Han S, Park Y, Shim C, Jang Y, Yang B, Xu A, Wang Y , Sweeney G*.	Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. <i>J</i> <i>Biol Chem.</i> 287(7):4808-17.	No	No	Yes
2012 (Item-14)	Liu JT, Song E, Xu A, Berger T, Mak TW, Tse HF, Law IK, Huang B, Liang Y, Vanhoutte PM*, Wang Y*.	Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol. 165(2):520-31	Yes (2012)	No	Yes
2012 (Item-15)	Yang B, Fan P, Xu A, Lam KSL, Berger T, Mak TW, Tse HF, Yue JWS, Song E, Vanhoutte PM, Sweeney G, and Wang Y*	Improved functional recovery to I/R injury in hearts from lipocalin-2 deficiency mice: restoration of mitochondrial function and phospholipids remodeling <i>Am J</i> <i>Transl Res.</i> 4(1): 60–71.	Yes (2012)	No	Yes
2012 (Item-16)	Ji Y, Sun S, Xu A, Bhargava P, Yang L, Lam KSL, Gao B, Lee CH, Kersten S, Qi L*	Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via the IL-4/STAT6 signaling axis in obesity. J Biol Chem. 287(17):13561-71	Yes (2012)	No	Yes

2012 (Item-17)	Liu L, Liu J, Wong WT, Tian XY, Lau CW, Wang YX, Xu G, Pu Y, Zhu Z, Xu A, Lam KSL , Chen ZY, Ng CF, Yao X, Huang Y *.	Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism <i>Hypertension.</i> 60(3):833-41	Yes (2012)	No	Yes
2011 (Item-18)	Tian XY, Wong WT, Xu A , Chen ZY, Lu Y, Liu LM, Lee VW, Lau CW, Yao X, and Huang Y *	Rosuvastatin improves endothelial function in <i>db/db</i> mice: role of angiotensin II type 1 receptors and oxidative stress <i>Br J Pharmacol.</i> 164(2b): 598–606.	Yes (2012)	No	Yes
2011 (Item-19)	Wong SL*, Lau CW, Wong WT, Xu A , Au CL, Ng CF, Ng SS, Gollasch M, Yao X, Huang Y *.	Pivotal role of protein kinase Cξ in angiotensin II-induced endothelial cyclooxygenase II expression: A link to vascular inflammation. <i>Arterioscler</i> <i>Thromb Vasc</i> <i>Biol.</i> 31(5):1169-76	Yes (2012)	No	Yes
2012 (Item-20)	Li FY, Lam KSL and Xu A*.	Therapeutic perspectives for adiponectin: an update. <i>Curr Med Chem.</i> 19(32):5513-23.	Yes (2012)	No	Yes

2012	X 7 A 1	A 11	X 7	2.7	X 7
(Item-21)	Xu A and Vanhoutte PM *.	Adiponectin and adipocyte fatty acid binding proteins in the pathogenesis of cardiovascular disease. <i>Am J Physiol</i> <i>Heart Circ</i> <i>Physiol.</i> 302(6):H1231-40.	Yes (2012)	No	Yes
2012 (Item-22)	Hui X, Lam KSL, Vanhoutte PM and Xu A*.	Adiponectin and cardiovascular health, an update. <i>British Journal of</i> <i>Pharmacology</i> 165(3):574-90.	Yes (2012)	No	Yes
2012 (Item-23)	Wang Y*.	Small lipid-binding proteins in regulating endothelial and vascular functions: Focusing on adipocyte fatty acid binding protein and lipocalin-2 <i>British</i> <i>Journal of</i> <i>Pharmacology</i> 165(3):603-21.	Yes (2012)	No	Yes
2013 (Item-24)	Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A*, Li X*.	Adiponectin Mediates the Metabolic Effects of FGF21 on Glucose Homeostasis and Insulin Sensitivity in Mice. <i>Cell Metab</i> . 2013, 17:779-89.	Yes (2013)	No	Yes
2013 (Item-25)	Gu P, Xu A*.	Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. <i>Rev</i> <i>Endocr Metab</i> <i>Disord</i> . 2013Mar; 14(1):49-58	Yes (2013)	No	Yes

r					
2013 (Item-26)	Liu Y, Turdi S, Park T, Morris NJ, Deshaies Y, Xu A , Sweeney G.	Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomics profile and whole-body glucose homeostasis. <i>Diabetes</i> . 2013 Mar; 62(3):743-52	Yes (2013)	No	Yes
2013 (Item-27)	Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM*.	Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. <i>Arterioscler</i> <i>Thromb Vasc</i> <i>Biol.</i> 2013Apr; 33(4):777-84.	Yes (2013)	No	Yes
2013 (Item-28)	Tonks KT, Ng Y, Miller S, Coster AC, Samocha-Bonet D, Iseli TJ, Xu A* , Patrick E, Yang JY, Junutula JR, Modrusan Z, Kolumam G, St öckli J, Chisholm DJ, James DE, Greenfield JR.	Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. <i>Diabetologia</i> . 2013 Apr; 56(4):875-85.	Yes (2013)	No	Yes
2013 (Item-29)	Vu V, Bui P, Eguchi M, Xu A , Sweeney G.	Globular adiponectin induces LKB1/AMPK-dep endent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol. 2013 51: 155-165	No	Yes	Yes

2013		Park M, Wu D,	APPL1 transgenic	No	Yes	Yes
(Item-30)		Park T, Choi CS,	mice are protected			
		Li RK, Cheng	from high-fat			
		KK, Xu A,	diet-induced			
		Sweeney G.	cardiac			
			dysfunction. Am J			
			Physiol			
			Endocrinol			
			<i>Metab</i> . 2013 Oct			
			1; 305 (7):			
			E795-804.			
2013		Heilbronn LK,	Metabolically	No	Yes	Yes
(Item-31)		Campbell LV, Xu	protective			
		Α,	cytokines			
		Samocha-Bonet	adiponectin and			
		D.	fibroblast growth			
			factor-21 are			
			increased by acute			
			overfeeding in			
			healthy humans.			
			PLoS One. 2013			
			Oct			
			18;8(10):e78864			
2014		Qiu B, Shi X,	NUCKS Is a	No	Yes	Yes
(Item-32)		Wong ET, Lim J,	Positive			
		Bezzi M, Low D,	Transcriptional			
		Zhou Q,	Regulator of			
		Akıncılar SC,	Insulin Signaling			
		Lakshmanan N,	Cell Reports			
		Swa HLF, Tham	2014 Jun;			
		JML, Gunaratne	7(6): 1876-1886			
		J, Cheng KKY,				
		Hong W, Lam				
		KSL, Ikawa M,				
		Guccione E, Au				
		A, Hall W, Torgoonkor V				
2014		I i H Wei S	BIG3 inhibits	No	Vas	Vas
$(Item_{-}33)$		Cheng K. Gounko	insulin granule	140	105	105
(110111-33)		NV Fricksen RF	hiogenesis and			
		XII A Hong W*	insulin secretion			
		and Han W*	EMBO Reports			
			2014 Jun:			
			15(6): 714-722			

2014 (Item-34)	Cheng KKY, Lam KSL, Wang B, Xu A*.	Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin <i>Best Practice &</i> <i>Research:</i> <i>Clinical</i> <i>Endocrinology &</i> <i>Metabolism</i> 2014 Jan; 28(1): 3-13	No	Yes	Yes
2014 (Item-35)	Song E, Fan P, Huang B, Deng B, Cheung BMY, F & tou M, Vilaine J, Villeneuve N, Xu A, Vanhoutte PM, Wang Y.	Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice <i>JAHA</i> 2014; 3: e000837	No	Yes	Yes
2014 (Item-36)	Lin Z, Wu F, Lin S, Pan X, Jin L, Lu T, Shi L, Wang Y, Xu A* , Li X*.	Adiponectin protects against acetaminophen-in duced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice <i>Journal of</i> <i>Hepatology</i> 61(4): 825-831	No	Yes	Yes
2014 (Item-37)	Wang Y*	Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation. <i>Diabetes & Metabolism</i> <i>Journal</i> 38(5); 321-329	No	Yes	Yes
2014 (Item-38)	Bai B, Vanhoutte PM, Wang Y.	e Loss-of-SIRT1 function during vascular ageing: hyperphosphorylat ion mediated by cyclin-dependent kinase 5. <i>Trends</i> <i>Cardiovasc Med.</i> 24 (2): 81-4	No	Yes	Yes

2014	Chan CK, Liao	Protective effects	No	Yes	Yes
(Item-39)	SY, Zhang YL,	of histamine on			
	Xu A, Tse HF,	Gq-mediated			
	Vanhoutte PM.	relaxation in			
		regenerated			
		endothelium. Am			
		J Physiol Heart			
		Circ Physiol.			
		15;306(2):H286-9			
		0.			
2014	Wang Y, Xiao Y,	Increased	No	Yes	Yes
(Item-40)	Zhong L, Ye D,	neutrophil elastase			
	Zhang J, Tu Y,	and proteinase 3			
	Bornstein SR,	and augmented			
	Zhou Z, Lam KS,	NETosis are			
	Xu A.	closely associated			
		with β-cell			
		autoimmunity in			
		patients with type			
		1 diabetes.			
		Diabetes.			
		63(12):4239-48.			

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each conference abstract*)

Month/Year/ Place	Title	Conference Name	Submitted to RGC (indicate the year ending of the relevant progress report)	Attached to this report (Yes or No)	Acknowledged the support of RGC (Yes or No)
March/2014/ Kuala Lumpur, Malaysia	Interplay Between Adipokines And Hepatokines In Obesity-related Metabolic Complications	12 th International congress on obesity, 2014	No	Yes	Yes
November/2 014/Suntec City, Singapore	Adiponectin, FGF21 and metabolic homeostasis	10th International Diabetes Federation- Western Pacific Region Congress	No	Yes	Yes

10. *Student(s) trained* (please attach a copy of the title page of the thesis)

Name		Degree registered for	Date of registration	Date of thesis
			Ũ	submission/ graduation
1.	Zhao Yingzi	Doctor of Philosophy	September 01, 2010	August 31, 2014
2.	Manio Micheal Magtoto	Doctor of Philosophy	September 01, 2010	August 31, 2014
3.	Xu Cheng	Doctor of Philosophy	September 01. 2009	August 31, 2013
4.	Lee Pei Chi	Master of Philosophy	September 01, 2011	August 31, 2013
5.	Bai Bo	Doctor of Philosophy	January 01, 2010	December 31, 2013
6.	Liang Yan	Doctor of Philosophy	September 01. 2009	August 31, 2013
7.	Li Jie	Master of Philosophy	September 01. 2009	August 31, 2013
8.	Fan Pencheng	Doctor of Philosophy	September 01, 2010	August 31, 2014
9.	Song Erfei	Doctor of Philosophy	September 01, 2010	August 31, 2014
10.	Wang Yu-Dong	Doctor of Philosophy	September 01, 2010	August 31, 2014
11.	Baretella Oliver Marc	Doctor of Philosophy	September 01, 2011	August 31, 2015
12.	Cai Yin	Doctor of Philosophy	January 01, 2011	December 31, 2014
13.	Zhong Ling	Doctor of Philosophy	September 01, 2011	August 31, 2015
14.	Detremmerie Charlotte	Doctor of Philosophy	October 02, 2012	October 01, 2016
15.	Li Jin	Doctor of Philosophy	September 01, 2012	August 31, 2016
16.	Shu Lingling	Doctor of Philosophy	September 01, 2012	August 31, 2016
17.	Wang Baile	Doctor of Philosophy	September 01, 2012	August 31, 2016
18.	Huang Zhe	Doctor of Philosophy	September 01, 2012	August 31, 2016
19.	Liu Jian	Doctor of Philosophy	January 01, 2011	December 31, 2014
20.	Cai Yu	Doctor of Philosophy	September 01, 2010	August 31, 2014
21.	Feng Tianshi	Doctor of Philosophy	September 01, 2014	August 31, 2018
22.	Cheong Lai Yee	Doctor of Philosophy	September 01. 2014	August 31, 20188
23.	Pan Yong	Doctor of Philosophy	September 01, 2013	August 31, 2017
24.	Chen Zhanrui	Master of Philosophy	September 01, 2013	August 31, 2015

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

A. Technology transfer and applied research: (1) So far, we have obtained two patents for lipocalin-2 (8,030,097 B2 and 7,645,616). As lipocalin-2 is one of the key adipokines studied in this project, acquisition of this patent will provide us a unique advantage for continuation of both basic and applied research in this field. (2) Through the HKU antibody and immunoassay services (AIS) established by PI and co-PIs (www.antibody.hku.hk), we have developed a number of monoclonal antibody-based immunoassays for quantifying serum levels of various biomarkers related to diabetes and cardiovascular disease, which have been licensed to several European and US companies (Biovendor, Abcam, Novo Nordisk, Merck) for basic and clinical research, clinical trials, and clinical diagnosis. (3) We are also working closely with a Shenzhen-based company to apply for SFDA approval in China for our rapid lipocalin-2 diagnostic kit for risk detection of cardiovascular diseases. (4) Through our strategic alliance with Servier, we have now secured three contract research grants with a total amount of ~15 million HKD to use our high throughput assays and animal models to develop pharmacological inhibitors of A-FABP, lipocalin-2 and TLR4 for treating obesity-related metabolic and cardiovascular diseases. (5) With the support of University-industry matching fund (UIM/270, 3,998,000 HKD) from Hong Kong ITC obtained this year, we collaborate with Zhang Long Co. Ltd. for development of innovative chemiluminescent immunoassays for diabetes and cardiovascular diseases.

B. International collaborations: With this grant support, we have also established an extensive collaboration network on both basic and clinical studies of adipokines and adipose tissue inflammation. (1) In collaboration with Prof. Li Xiaokun at Wenzhou Medical University, we have

investigated the protective effect of adiponectin against acetaminophen-induced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice (see publication item-24 and 36); (2) In collaboration with Prof. Samocha-Bonet at University of Adelaide (Australia), we demonstrated that the metabolically protective adipokines adiponectin and fibroblast growth factor-21 are increased by acute overfeeding in healthy humans (see publication item-31). (3) In collaboration with Dr. Qi Lin at Cornell University, we have investigated the roles of NTK cells in the onset and progression of adipose tissue inflammation in obese mice and humans (see item-16). Our HKU team conducted studies in human adipose tissue in this manuscript and provided animal models. (4) In collaboration with Dr. Gary Sweeney at York University, Canada, we have investigated the global metabolic effects of adiponectin using an integrated metabolomics approach (Liu Y, Xu A and Sweeney G, Diabetes, 2012, item 13, 15, 26, 29 and 30). (5) In collaboration with Dr. Jerry Greenfield at Australia Garvan Institute of Medical Health, we have compared the levels of adiponectin, A-FABP and lipocalin-2 among lean individuals, obese metabolically healthy subjects, obese insulin resistant subjects and obese diabetic subjects, and discovered that progressively increased A-FABP, but decreased adiponectin from lean to obese with diabetic patients (Tong C, Xu A and Greenfield G, Diabetologia, 2013, item-28). (6) We have also extended our long-term collaboration with Prof. Donghai Wu at Guangzhou Institute of Biomedicine and Science (GIBH) to work on the role of adaptor protein APPL1 in mediating adiponectin and insulin actions (see item items 3-5 and 30). For all these collaborations, our HKU team provided adipokine assays, animal models, performed part of the experiments and contributed to the conceptual design of the studies.