RGC Reference HKU1/CRF/11G please insert ref. above

The Research Grants Council of Hong Kong Collaborative Research Fund Group Research Projects Completion Report

(for completed projects only)

Part A: The Project and Investigator(s)

1. Project Title

Molecular mechanisms of innate antiviral response

2. Investigator(s) and Academic Department/Units Involved (please highlight approved changes in the composition of the project team and quote the date when RGC granted approval of such changes)

			Average number of
			hours per
			week spent on
			this project in
			the current
Research			reporting
Team	Name/Post	Unit/Department/Institution	period
Project	Jin, Dong-Yan	School of Biomedical Sciences,	12
Coordinator	Professor	The University of Hong Kong	
Co-Principal	Au, Shannon Wing Ngor	School of Life Sciences,	8
investigator	Associate Professor	Chinese University of Hong Kong	
	Kok, Kin-Hang	Department of Microbiology, The	12
	Assistant Professor	University of Hong Kong	
	Lau, Allan Sik-Yin	Department of Pediatrics and	0
	Professor (deceased)	Adolescent Medicine, The	
		University of Hong Kong	
	Qi, Robert Z.	Division of Life Science, Hong	2
	Professor	Kong University of Science and	
		Technology	
	Sham, Mai Har	School of Biomedical Sciences,	4
	Professor	The University of Hong Kong	
	Yuen, Kwok Yung	Department of Microbiology, The	4
	Chair Professor	University of Hong Kong	
	Zheng, Bo-Jian	Department of Microbiology, The	4
	Professor	University of Hong Kong	

Collaborator	Chan, Chi-Ping	School of Biomedical Sciences,	
	Research Assistant	The University of Hong Kong	
	Professor		
Collaborator	Li, James Chun-bong	Department of Pediatrics and	
	Assistant Professor	Adolescent Medicine, The	
		University of Hong Kong	
Collaborator	Yeung, Man-Lung	Department of Microbiology, The	
	Research Assistant	University of Hong Kong	
	Professor		
Collaborator	Zhou, Jie	Department of Microbiology, The	
	Research Assistant	University of Hong Kong	
	Professor		

3. **Project Duration**

	Original	Revised	Date of RGC Approval (must be quoted)
Project Start Date	June 1, 2012		
Project Completion Date	May 31, 2015		
Duration (in month)	36		
Deadline for Submission of Completion Report	May 31, 2016		

Part B: The Final Report

5. **Project Objectives**

- 5.1 Objectives as per original application
 - 1) We will determine the crystal structures of PACT, RIG-I and PACT-RIG-I complexes, define the interface, stoichiometry and kinetics of PACT-RIG-I interaction, and characterize the conformational changes of RIG-I induced by PACT binding.
 - 2) We will use gene targeting technology to create conditional *Pact*-knockout mice, thereby clarifying the physiological roles of PACT in different cells, tissues and organs *in vivo*.
 - 3) We will shed light on the mechanisms by which PACT activates RIG-I and MDA5. The roles of PACT in viral RNA detection, the regulation of PACT by phosphorylation and the formation of multiple PACT-containing complexes in virus-infected cells will be investigated in cultured cells and mouse models.
 - 4) We will characterize the function of PACT in the context of influenza A virus infection. The mechanisms by which influenza A virus counteracts PACT function will be delineated.
- 5.2 Revised objectives

Date of approval from the RGC: _____

Reasons for the change:

1. 2. 3.

6. Research Outcome

6.1 Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

Requirement of PACT for innate antiviral response

We found that the induction of type I interferons (IFNs) and IFN-stimulated genes (ISGs) by herpes simplex virus type 1 (HSV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), Sendai virus and measles virus was abrogated or severely compromised in PACT^{-/-} mice and cells (Kew et al., J. Virol., 2013; Siu et al., J. Virol., 2014; Ho et al., J. Virol., 2016). Particularly, these viruses or their viral RNA could not induce IFN- β and other ISGs in the absence of PACT. A side-by-side comparison with RIG-I^{-/-} and MDA5^{-/-} cells was also made. In addition, the role of PACT in innate antiviral response to a retrovirus has also been implicated (Yuen et al., J. Virol., 2016). Similar findings were obtained from PACT^{-/-} general knockouts from at least three difference sources, with different viruses including Ebola virus and influenza A virus, and also by different groups (Luthra et al., Cell Host Microbe, 2013; Tawaratsumida et al., J. Virol., 2014). Collectively, these findings overturned a previous report by a leading group in the field (Marques et al., J. Interferon Cytokine Res., 2008; Peters et al., PNAS, 2009) and established that PACT is physiologically required for initiation and maintenance of innate antiviral response. This new concept has received more and more recognition by others in the field.

Identification and characterization of a viral RNA agonist of PACT and RIG-I

In search of viral RNA ligands of PACT and RIG-I, we identified and characterized a defective-interfering (DI) RNA specifically expressed by the Hu-191 attenuated vaccine strain of measles virus this strain, capable of inducing IFN- β much more potently than the Edmonston strain. This DI RNA of the copy-back type was predicted to fold into a hairpin structure with a long double-stranded stem region of 206 bp and it potently induced the expression of IFN- β . Its IFN- β -inducing activity was further enhanced when both cytoplasmic RNA sensor RIG-I and its partner PACT were overexpressed. On the contrary, this activity was abrogated in cells deficient of PACT or RIG-I. The DI RNA was found to be associated with PACT in infected cells. In addition, both the 5'-di/triphosphate end and the double-stranded stem region on the DI RNA were essential for its activation of PACT and RIG-I. The Hu-191 vaccine has been used safely in millions of people for many years. Viral RNA similar to the DI RNA of Hu-191, which binds with and activates PACT and RIG-I, might retain the immunostimulatory property of measles vaccines but would not induce adaptive immunity. They are potentially useful as chemically defined vaccine adjuvants, antivirals and immunostimulatory agents (Ho et al., J. Virol., 2016).

PACT targeting as a common viral strategy for innate immune evasion

We and others have found a group of viral IFN-antagonizing proteins that target PACT function to evade innate antiviral response. Two viral proteins in this group that we reported are HSV-1 Us11 (Kew et al., J. Virol., 2013) and MERS-CoV 4a (Siu et al., J. Virol., 2014). Other members reported by others include Ebola virus VP35 (Luthra et al., Cell Host Microbe, 2013) and influenza A virus NS1 (Tawaratsumida et al., J. Virol., 2014). These proteins have dsRNA-binding property. They can also bind to PACT in RNA-independent manner. Their binding to PACT prevented PACT from interacting with and activating RIG-I and MDA5. At least in some cases PACT might also antagonize their function in

viral replication. In other words, PACT exerts dual antiviral activity through two mechanisms. Our work reveals that different viruses including DNA viruses, RNA viruses and retroviruses might use a common strategy to evade innate antiviral response by targeting PACT.

6.2 Potential for further development of the research and the proposed course of action *(maximum half a page)*

Renewal funding has been awarded (C7011-15R) so that we can continue our study of PACT-dependent innate antiviral response. We aim high and target the best journals for publication of our new findings. Particularly, in the renewal project we will delineate the mechanism by which PACT activates MDA5 and publish our findings in a well-respected international journal. In addition, we will shed light on how PACT exerts its dual antiviral activity in the context of influenza A virus and hepatitis B virus infection. Our findings will help to corroborate a model in which PACT facilitates RIG-I and MDA5 to activate innate antiviral response on one hand, but targets viral RNA or ribonucleoprotein (RNP) to suppress viral replication on the other hand. In addition, we will endeavor to identify partners and collaborators who have experience in R&D to push some of the lead compounds we discovered to translational research and drug development. Particularly, the Hu-191 vaccine is highly immunogenic and its combined use with other vaccines is also efficacious. Modelled on DI RNA of Hu-191, we can design RNA molecules that interact with and activate PACT and RIG-I. These agents are highly immunostimulatory but would not induce adaptive immunity. Therefore they are promising and chemically defined agents with good potential to be developed as vaccine adjuvants, antivirals and immunostimulatory agents.

6.3 Research collaboration achieved (please give details on the achievement and its relevant impact)

Through this project we have significantly strengthened our collaboration with structural biologists (Dr. Shannon Au and Prof. Robert Qi), clinical virologists (Prof. KY Yuen and Prof. BJ Zheng), immunologist (Dr. James Li) and mouse genetist (Prof. MH Sham). A combination of these expertise has become the new strength of our group. In addition, we have also trained several young scientists, two of whom (Dr. KH Kok and Dr. James Li) have moved up to tenured-track faculty positions during this period. With the addition of a few energetic young scientists (Dr. CP Chan, Dr. ML Yeung and Dr. Jie Zhou), the same group has started to work on the renewal project. Most Co-PIs have been co-authors in the papers that we published.

Dr. Au has been working together with us to use many new methods in protein biochemistry and structural biology to tackle critical issues in the study of how PACT activates RIG-I and MDA5. This adds a new dimension to our project and we will continue to strengthen our collaboration so that we can achieve new heights.

Without Prof. Yuen's support, we would be unable to identify and characterize a PACT-targeting viral protein in MERS-CoV. We have learned a lot about emerging infectious diseases from him. Our collaborative work has already developed into a major part in another joint project under the Theme-based Research Scheme. We have

complementary expertise and resources, our joint effort will enable us to be even more successful in the study of new viruses such as MERS-CoV and Zika virus.

With the support from Prof. MH Sham, we obtained, created and used the first gene knockout mouse in our group. This adds new strength to our team which is strong in molecular virology. We will continue and expand our collaboration to other areas in the broad field of innate antiviral response.

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

Innate antiviral response is the host's front-line barrier to viral infection. To activate this response, signature molecules of the virus have to be recognized by highly specialized sensor proteins of the host. One major sensor called RIG-I is responsible for the sensing of viral RNA. We demonstrated that RIG-I does not sense viral RNA on its own but fulfills this task together with another host protein named PACT, which is capable of binding directly to viral RNA. To clarify whether PACT is essential in virus sensing, we showed that mouse cells in which PACT gene is completely deleted are unable to mobilize antiviral response. We next determined what type of viral RNA is recognized by PACT and RIG-I using the vaccine strain of measles virus. We found that PACT and RIG-I recognize a special type of viral RNA, which can be made to stimulate antiviral response just like the adjuvant in a vaccine. Finally, we found that different pathogenic human viruses including herpes simplex virus and Middle East respiratory syndrome coronavirus use their viral proteins to cripple PACT in virus sensing. Our work provides not only new knowledge but also new strategies for developing vaccines, adjuvants and antivirals.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The I	atest Status	of Public	ations	Author(s) (denote	Title and	Submitted			Accessible
Year of publication	Year of Acceptance (For paper accepted but not yet published)	Under Review	Under Preparation (optional)	the corresponding author with an asterisk*)	Journal/Book (with the volume, pages and other necessary publishing details specified)	to RGC (indicate the year ending of the relevant progress report)	to this report (Yes or No)	d the support	from the institutional repository (Yes or No)
2016				Jia L, Chan J, Chan KH, Cheung	MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. <i>Nat.</i> <i>Microbiol.</i> , 1:16004	2016	Yes	Yes	Yes
2016				Lui PY., Wong LYR, Fung CL, Siu KL, Yeung ML, Yuen KS, Chan CP, Woo PCY, Yuen KY, Jin* DY.	MERS coronavirus M protein suppresses type I interferon expression through inhibition of TBK1-dependent phosphorylation of IRF3. <i>Emerg.</i> <i>Microbes Infect.</i> , 5:e39	2016	Yes	Yes	No
2016				Wong LYR, Lui PY, Jin* DY.	A molecular arms race between host innate antiviral response and emerging human coronaviruses. <i>Virologica Sinica</i> , 31:12-23	2016	Yes	Yes	Yes
2016				Yuen CK, Chan CP, Fung SY, Wang PH, Tang HMV, Yuen KS, Chan CP, Jin* DY, Kok* KH.	Suppression of type I interferon production by HTLV-1 oncoprotein Tax through inhibition of IRF3 phosphorylation. J. Virol., 90:3902-12	2016	Yes	Yes	Yes

2016	He TH Kew C	DACT and	2016	Vac	Vac	Vac
2016	Ho TH, Kew C,		2016	Yes	Yes	Yes
	Lui PY, Chan CP, Satoh T, Akira S,	RIG-I-dependent				
		activation of type I				
	Jin* DY, Kok*	interferon				
	KH.	production by a				
		defective-interfering				
		RNA in measles				
		virus vaccine. J.				
		Virol., 90:1557-68			_	
2016	Zhao H, Zhou J,	1 1	2016	Yes	Yes	Yes
	Zhang K, Chu H,	with potent and				
	Liu D, Poon VK,	broad-spectrum				
	Chan CC, Leung	antiviral activities				
	HC, Fai N, Lin YP,					
	Zhang AJ, Jin DY,	respiratory viruses.				
	Yuen KY, Zheng*	Sci. Rep., 6:22008				
	BJ					
2016	Chu H, Zhou J,	Middle East	2016	Yes	Yes	Yes
	Wong BH, Li C,	respiratory				
	Chan JF, Cheng	syndrome				
	ZS, Yang D, Wang					
	D, Lee AC, Li C,	efficiently infects				
	Yeung ML, Cai JP,					
	Chan IH, Ho WK,	lymphocytes and				
	To KK, Zheng BJ,	activates the				
	Yao Y, Qin C,	extrinsic and				
	Yuen* KY	intrinsic apoptosis				
		pathways. J. Infect.				
		Dis., 213:904-14				
2016	Zhang XM, Zhang	Novel mutations	2016	Yes	Yes	No
2010	Q, Wu H, Lau TC,	L228I and Y232H	2010	105	105	110
	Liu X, Chu H,	cause nonnucleoside				
	Zhang K, Zhou J,	reverse				
	Chen ZW, Jin	transcriptase				
	DY, Zheng* BJ.	inhibitor resistance				
	D I, Zheng ¹ DJ.	in combinational				
		pattern. AIDS Res.				
		Hum. Retroviruses.,				
		doi: 10.1089/aid.				
		2015.0359				
2015	Chaudhary V,	Suppression of type	2016	Yes	Yes	Yes
2015			2016	res	res	res
	Zhang S, Yuen KS,					
	Li C, Lui PY, Fung					
	SY, Wang PS,	protein of SFTSV				
	Chan CP, Li D,	through inhibition				
	Kok KH, Liang*	of STAT1				
	M, Jin* DY.	phosphorylation and				
		activation. J. Gen.				
		Virol., 96:3204-11				
	Tang HMV, Gao	SIRT1 suppresses	2016	Yes	Yes	Yes
2015						
2015	WW, Chan CP,	human T-cell				
2015						
2015	WW, Chan CP,	human T-cell leukemia virus type 1 transcription. J.				

			2015	x 7	x 7	× 7
2015	Zhang XM, Wu H, Zhang O, Lau	A novel mutation D404N in the	2016	Yes	Yes	Yes
	Zhang Q, Lau TCK, Chu H, Chen					
		subdomain of				
	BJ.	reverse transcriptase				
	200	of HIV-1				
		CRF08_BC subtype				
		confers				
		cross-resistance to				
		NNRTIs. J.				
		Antimicrob.				
		Chemother.,				
		70:1381-90				
2015	Yuen KS, Chan	CRISPR/Cas9-	2016	Yes	Yes	Yes
	CP, Wong NHM,	mediated genome				
	Ho CH, Ho TH,	editing of Epstein-				
	Lei T, Deng W,	Barr virus in human				
	Tsao SW, Chen H,	cells. J. Gen. Virol.,				
		96:626-36				
2014	Siu KL, Yeung	Middle East	2015	No	Yes	Yes
	ML, Kok KH,	respiratory				
	Yuen KS, Kew C,	syndrome				
	Lui PY, Chan CP,	coronavirus 4a				
	Tse H, Woo PCY,	protein is a				
	Yuen KY, Jin*	double-stranded				
	DY.	RNA-binding				
		protein that				
		suppresses				
		PACT-induced				
		activation of RIG-I				
		and MDA5 in innate				
		antiviral response. J. Virol.,				
		88:4866-76				
2013	Kew C, Lui PY,	Suppression of	2015	No	Yes	Yes
2013	Chan CP, Liu X,	PACT-induced type	2013	140	105	105
	Au SWN, Mohr I,	I interferon				
	Jin* DY, Kok*	production by				
	KH.	herpes simplex				
	1111.	virus type 1 Us11				
		protein. J. Virol.,				
		87: 13141-9				
2013	Kok KH, Jin* DY.	Balance of power in	2013	No	Yes	Yes
1 1 1		host-virus arms				
		races. Cell Host				
		<i>Microbe</i> , 14:5-6				
2013	Lau SKP, Lau	Delayed induction	2013	No	Yes	Yes
	CCY, Chan, KH,	of proinflammatory				
	Li CPY, Chen H,	cytokines and				
	Jin DY, Chan	suppression of				
	JFW, Woo PCY,	innate antiviral				
	Yuen* KY.	response by the				
		novel Middle East				
		respiratory				
		syndrome				
		coronavirus:				
		implications for				
		pathogenesis and				
		treatment. J. Gen.				
		Virol., 94:2679-90.		1	1	

2014		Zhan L Ch. H L'	A	2015	NL-	V	Var
12014		Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen* KY.	Active replication of Middle East respiratory syndrome coronavirus replication and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis. J. Inf. Dis., 209:1331-42.	2015	No	Yes	Yes
2014		Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, Poon VK, Sun T, Lau CC, Chan JF, To KK, Chan KH, Lu L, Zheng BJ, Yuen* KY.	Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. <i>Virology</i> , 454-455:197-205.	2015	No	Yes	Yes
2013		Chan JFW, To KKW, Tse H, Jin DY, Yuen* KY.	Interspecies transmission and emergence of novel viruses: lessons from bats and birds. <i>Trends Microbiol.</i> , 21:544-55.	2013	No	Yes	Yes
2014		Siu KL, Chan CP, Kok KH, Woo PCY, Jin* DY.	Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. <i>Cell. Mol.</i> <i>Immunol.</i> , 11:141-9.	2015	No	Yes	Yes
2014		Siu KL, Chan CP, Woo PCY, Jin* DY.	Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1. <i>Cell Biosci.</i> , 4:3.	2015	No	Yes	Yes

2014		Yip, T.F., Lai, J.C.C., Guan, Y.,	10 is involved in induction of innate immune responses to influenza virus infection. <i>Proc.</i>	2015	No	Yes	Yes
2014		Tang, HM. V., Gao, W W., Chan, C P., Cheng, Y.,	Requirement of CRTC1 coactivator for hepatitis B virus transcription. <i>Nucl. Acids Res.</i> ,	2015	No	Yes	Yes
2014		Wen, X., Huang, X., Mok, B.WY., Chen, Y., Zheng, M., Lau, SY., Wang, P., Song, W., Jin, DY.,		2015	No	Yes	Yes

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each conference abstract*)

Month/Year/	Title	Conference Name	Submitted to	Attached to	Acknowledged	Accessible
Place			RGC (indicate	this report	the support of	from the
			the year ending	(Yes or No)	RGC	institutional
			of the relevant		(Yes or No)	repository
			progress report)			(Yes or No)
December	Immunostimulatory	The 3 rd Cross	2013	No	Yes	Yes
2012, Hefei,	function of measles virus	Straight				
Anhui, China	defective interfering RNA	Immunology				
		Conference and the				
		3rd CMI Symposium				
		on Immunology				
May 2013,	Immunostimulatory	78th Cold Spring	2013	No	Yes	Yes
New York	function of the defective	Harbor Symposium				
	interfering RNA of measles	on Quantitative				
	virus	Biology: Immunity				
		and Tolerance				
May 2013,	Herpes simplex virus type 1	78th Cold Spring	2013	No	Yes	Yes
New York	Us11 suppresses innate	Harbor Symposium				
	antiviral immune response	on Quantitative				
	by preventing	Biology: Immunity				
	PACT-induced activation of	and Tolerance				
	RIG-I					

June 2013, Montreal, Canada	Suppression of type I interferon production by human T-cell leukemia virus type 1 Tax oncoprotein	16 th International Conference on Human Retrovirology: HTLV and Related Viruses	2013	No	Yes	Yes
July 2013, Xi'an, China	Differential roles of RNA-binding proteins TRBP and PACT in RNA silencing and sensing	The 14 th Society of Chinese Bioscientists in America International Symposium	2013	No	Yes	Yes
July 2013, Xi'an, China	Influenza A virus NS1 protein suppresses innate antiviral immune response by preventing PACT-induced activation of RIG-I	The 14 th Society of Chinese Bioscientists in America International Symposium	2013	No	Yes	Yes
September 2013, Amsterdam	Herpes simplex virus type 1 Us11 inhibits type I interferon production by suppressing PACT-mediated RIG-I activity	The EMBO Meeting 2013	2013	No	Yes	Yes
October – November 2014, Lorne, Australia	Viral suppression of type I interferon production through PACT targeting.	The Yin & Yang of the Interferon System. International Cytokine and Interferon Society Satellite Symposium 2014	2015	No	Yes	Yes
June 2014, Quebec City, Canada	Interplays between RNA-binding proteins determine viral infection outcome.	RNA 2014: The 19 th Annual Meeting of the RNA Society	2015	No	Yes	Yes
June 2014, Fort Collins, Colorado, USA	The double-stranded RNA-binding protein PACT activates cytoplasmic viral sensor MDA5 by promoting its oligomerization.	Virology 33rd	2015	No	Yes	Yes
July 2014, Brisbane, Queensland, Australia	Modulation of innate antiviral response by a single Epstein-Barr virus-encoded microRNA.	16 th International Symposium on EBV and Associated Diseases, organized by the EBV Association	2016	Yes	Yes	Yes
July 2014, Brisbane, Queensland, Australia	Roles of Epstein-Barr virus-encoded BART microRNAs in viral persistence and nasopharyngeal carcinogenesis.	16 th International Symposium on EBV and Associated Diseases, organized by the EBV Association	2016	Yes	Yes	Yes
November 2014, Guangzhou, China	The CRISPR/Cas9- mediated genome editing of Epstein-Barr virus: a new platform for genetic study.	International Forum for Herpesvirus, Associated Diseases and Antiviral Development 2014	2016	Yes	Yes	Yes

March 2015,	Influenza A virus NS1	Innate Immune	2016	Yes	Yes	Yes
Hinxton,	protein targets	Memory: A				
Cambridge,	double-stranded RNA	Wellcome Trust				
UK	binding protein PACT to	Scientific Conference				
	suppress innate antiviral response.	Conference				
June 2015,	Suppression of HTLV-1	17 th International	2016	Yes	Yes	Yes
Frois Ilets,	transcription by SIRT1	Conference on	2010	105	105	105
Martinique,	deacetylase.	Human				
French West	dedeetyluse.	Retrovirology:				
Indies	An abstract has been	HTLV & Related				
	published: <i>Retrovirology</i>	Viruses (HTLV				
	12(Suppl 1):P53, 2015	2015)				
June 2015,	Retroviral oncoprotein	The 15 th	2016	Yes	Yes	Yes
Academic	Tax-induced activation of	International				
Sinica, Taipei	LKB1-SIK and SIRT1	Symposium of the				
	signaling in the regulation	Society of Chinese				
	of HTLV-1 transcription.	Bioscientists in				
		America				
June 2015,	Suppression of innate	The 15 th	2016	Yes	Yes	Yes
Academic	interferon production and	International				
Sinica, Taipei		Symposium of the				
	SFTS virus.	Society of Chinese				
		Bioscientists in				
July 2015	Activation of	America The American	2016	Yes	Yes	Yes
July 2015, London,		Society for	2016	res	res	res
Ontario,	Sindbis virus.	Virology 34 th				
Canada	Sindois virus.	Annual Meeting				
July 2015,	Activation of NLRP3	The American	2016	Yes	Yes	Yes
London,	inflammasomes by severe	Society for	2010	105	105	105
Ontario,	acute respiratory syndrome	Virology 34 th				
Canada	coronavirus 3a protein.	Annual Meeting				
July 2015,	A vaccine strain of Measles	The American	2016	Yes	Yes	Yes
London,	virus produces a copy-back	Society for				
Ontario,	type defective-interfering	Virology 34 th				
Canada		Annual Meeting				
	innate antiviral response					
	through RIG-I and PACT					
July 2015,	A novel transcript isoform	The American	2016	Yes	Yes	Yes
London, Ontario	of STING that suppresses	Society for Virology 34 th				
Ontario, Canada	innate antiviral response	Annual Meeting				
July 2015,	Targeted genome editing of	The American	2016	Yes	Yes	Yes
London,	Epstein-Barr virus by	Society for	2010	105	105	105
Ontario,	CRISPR/Cas9 technology	Virology 34 th				
Canada	in human cells	Annual Meeting				
October	Influenza A virus NS1	10th Asia-Pacific	2016	Yes	Yes	Yes
2015, Taipei	protein targets double	Congress of				
*	stranded RNA-binding	Medical Virology				
	protein PACT to suppress	2015				
	innate antiviral response.					
October	Activation of hepatitis B	10th Asia-Pacific	2016	Yes	Yes	Yes
2015, Taipei	virus transcription by	Congress of				
	CRTC1 coactivator and	Medical Virology				
	PRMT5 protein arginine	2015				
	methyltransferase.					

January 2016 Basal, Switzerland	Inhibition of interferon production and signaling by severe fever with thrombocytopenia syndrome virus NSs protein.	Viruses 2016: At the forefront of virus-host interactions	2016	Yes	Yes	Yes
January 2016 Basal, Switzerland	Severe acute respiratory syndrome coronavirus 3a protein activates NLRP3 inflammasomes by promoting ASC ubiquitination.	Viruses 2016: At the forefront of virus-host interactions	2016	Yes	Yes	Yes
May 2016 Seattle, Washington, USA	Antagonising roles between PACT and influenza A virus polymerase subunits in viral replication and innate immune response.	The American Association of Immunologists Annual Meeting 2016	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	Suppression of the dual antiviral activity of PACT against influenza A virus by NS1.	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	Human T-cell leukemia virus type 1 Tax protein suppresses both RIG-I/PACT-dependent RNA sensing and cGAS/STING-dependent DNA sensing pathways.	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	Middle-East respiratory syndrome coronavirus M protein is a type I IFN antagonist that impedes TRAF3-TBK1complex formation.	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	PRMT5 protein arginine methyltransferase activates hepatitis B virus transcription.	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	Loss of immunostimulatory property of Sendai virus- derived defective-interfering RNA by adenosine-to-inosine editing	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No
June 2016, Blacksburg, Virginia, USA	Mutual antagonism between PACT and influenza A virus polymerase subunits regulates viral replication and interferon production.	The American Society for Virology 35th Annual Meeting	2016	Yes	Yes	No

10. *Student(s) trained* (please attach a copy of the title page of the thesis)

Name	Degree registered for	0	Date of thesis submission/ graduation
Zhao, Hanjun	Ph.D.	September 2009	August 2013
Lui, Pak-Yin	Ph.D.	September 2010	August 2014
Yuen, Kit San	Ph.D.	September 2010	August 2014

Ho, Ting-Hin	M. Phil.	September 2011	August 2013
Wang, Pei-Hui	Ph.D.	September 2011	August 2015
Li, Can	Ph.D.	September 2011	August 2015
Zhang, Xiao-Min	Ph.D.	September 2011	August 2015
Kew, Chun	M. Phil.	September 2012	August 2014
Gao, Wei-Wei	Ph.D.	September 2012	August 2016

11. Other impact (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)

Dr. Dong-Yan Jin was promoted to Full Professor in 2012. Dr. Mai Har Sham was promoted to Full Professor in 2013. Dr. Robert Qi was promoted to Full Professor in 2014. Dr. Dr. Kin-Hang Kok was promoted to a tenure-track Assistant Professor in the Department of Microbiology, The University of Hong Kong in 2014. Dr. James Li was promoted to Assistant Professor in 2015. Prof. Dong-Yan Jin was awarded the Croucher Senior Research Fellowship (the Croucher Award) 2014-2015. Prof. Jin was also awarded an Outstanding Research Student Supervisor Award of the University of Hong Kong in 2014. He was endowed as Clara and Lawrence Fok Professor in Precision Medicine in 2016.

Dr. Chi Ping Chan (Postdoc) won a Best Presentation Award given by the Society of Chinese Bioscientists in America in July 2013. Mr. Pak-Yin Lui (PhD student) won a travel award at the 33rd American Society for Virology Annual Meeting in July 2014. Mr. Vidyanath Chaudhary (PhD student), Mr. Wei-Wei Gao (PhD student) and Dr. Jian-Jun Deng (Postdoc) won a Best Poster Presentation Award at the Society of Chinese Bioscientists in America (SCBA) International Symposium in June 2015. Dr. Sam Yuen (Postdoc), Mr. Jasper Ho (PhD student), Miss Kitty Fung (MPhil student) and Mr. Pei-Hui Wang (PhD student) won an American Society for Virology travel grant to attend its 34th Annual Meeting in July 2015. Dr. Jian-Jun Deng (Postdoc), Mr. Hinson Cheung (PhD student) and Mr. Roy Wong (PhD student) won an American Society for Virology travel grant to attend its 35th Annual Meeting in June 2016.

We have established collaborations with Prof. Haiwei Song from IMCB, Singapore on structural analysis of PACT, RIG-I and MDA5; with Prof. Shizuo Akira from Osaka University, Japan on phenotypic analysis of RIG-I^{-/-} and MDA5^{-/-} cells; with Prof. Ian Mohr from New York University, USA on the study of PACT by herpes simplex virus 1 Us11 protein; and with Dr. Hidekatsu Iha from Oita University, Japan on the study of retroviral subversion of innate immunity.

We have filed a provisional US patent (Application Number: US62/170780) entitled "Diagnosis and treatment of MERS-related renal diseases" in June 2015.

Project Coordinator

Contact Information: Email: <u>dyjin@hku.hk</u> Tel: 39179419