RGC Reference CUHK3/CRF/11G

please insert ref. above

The Research Grants Council of Hong Kong Collaborative Research Fund Group Research Projects Completion Report

(for completed projects only)

Part A: The Project and Investigator(s)

1. Project Title

Genomic and molecular studies of a salinity tolerance locus in the wild soybean genome 野生大豆內一個耐鹽位點的基因組及分子生物學研究

2. Investigator(s) and Academic Department/Units Involved (please highlight approved changes in the composition of the project team and quote the date when RGC granted approval of such changes)

			Average
			hours per week
			spent on this
			project in the
			current
		Unit/Department/Instituti	reporting
Research Team	Name/Post	on	period
Project	LAM Hon-Ming/ Professor	School of Life	5
Coordinator		Sciences/CUHK	
Co-Principal	CHAN Ting-Fung Philos/Asst.	School of Life	3
investigator(s)	Professor	Sciences/CUHK	
	GUO Dianjing Diane/ Asso.	School of Life	0
	Professor	Sciences/CUHK	
	NGAI Sai-Ming/ Asso.	School of Life	3
	Professor	Sciences/CUHK	
	ZHANG Jianhua/ Chair	School of Life	2
	Professor	Sciences/CUHK	
	LIM Boon-Leong Wallace/	School of Biol. Sci/HKU	2
	Asso. Professor		
	XU Xun/ Vice President of	BGI-Shenzhen	0
	R&D		
Collaborators/			
Others			

3. **Project Duration**

	Original	Revised	Date of RGC Approval (must be quoted)
Project Start Date	01/04/2012		
Project Completion Date	31/03/2015	30/09/2015	16/03/2015
Duration (in month)	36	42	16/03/2015
Deadline for Submission	31/12/2015	30/09/2016	16/03/2015
of Completion Report			

Part B: The Final Report

5. Project Objectives

- 5.1 Objectives as per original application
 - 1. To perform detailed bioinformatics and genomic analysis of the putative salinity tolerance locus in the wild soybean genome.
 - 2. To select, clone and examine the salt-tolerance functions of selected candidate genes within the putative salinity tolerance locus in the wild soybean genome.
 - 3. To characterize the stress response transcription factors located within the putative salinity tolerance locus in the wild soybean genome.
- 5.2 Revised objectives

Date of approval from the RGC:

Reasons for the change:

6. Research Outcome

6.1 Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

<u>Genomic analysis of the major salinity tolerance locus in the wild soybean genome:</u> We employed whole genome sequencing to refine the *de novo* sequencing data of a salt tolerant wild soybean (W05). Using a tailor-made recombinant inbred (RI) population that was a result of a cross between the salt tolerant W05 and a salt sensitive cultivated soybean (C08), we performed genotyping using low-coverage whole genome sequencing. Together with multi-year phenotypic data, we successfully constructed a map for quantitative trait loci. These novel strategies have successfully identified a major salt tolerant locus. Further molecular studies and functional tests have led to the identification of a casual gene conferring salt tolerance in W05. The gene encodes a putative cation/proton antiporter (Publication #11).

To make better use of the genomic and RNA-Seq data, we have developed several research platforms. We investigated the impacts of nucleotide fixation during soybean domestication (Publication #16) and summarized how whole genome sequencing could consolidate molecular markers for plant breeding (Publication #18). Using our RNA-Seq data, we evaluated a set of reference genes suitable for gene expression studies in soybean (Publication #19). We developed methods for organism-specific rRNA capturing (Publication #2). We also performed small RNA analyses (Publications #20 and Submitted Manuscript #28).

We have identified a transcriptional factor close to the salt tolerance locus of interest and found that it is associated with ABA signals. Transcriptional activity studies show that it is likely a transcriptional repressor. A manuscript is under-preparation to report these newest findings.

<u>Mechanisms of stress/salt tolerance in soybean:</u> Comprehensive surveys were performed to understand how omic researches could help to delineate possible mechanisms related to stress tolerance in soybean (Publications #4, 6, 20 and 24). While the cation/proton antiporter GmCHX1 is a key player of salt tolerance via regulating the level and distribution of sodium ions (Publication #11; see above), to balance the charge, regulation of anions such as chloride ions is also important. We have cloned the gene encoding a putative chloride/proton antiporter GmCLC1 from soybean. The function of GmCLC1 was demonstrated by electrophysiology and *in planta* gain-of-function tests (Publications #5 and 26).

Besides ion transportation, sequestering of reactive oxygen species (ROS) is also an important mechanism for salt tolerance. We showed that ROS scavengers could alleviate stress responses (Publications #9 and 10). Secondary compounds such as phenolic compounds may also play a role in stress tolerance of wild soybeans (Publication #8) and we found that wild soybean may accumulated more phenolic compounds in seeds which is regulated by a unique genomic region (Publication #25). In addition, salt/stress tolerance of soybean is also associated with proteomic and phosphos-proteomic changes especially in roots (Publications #22 and 24). We also performed physiological studies in relation to stress responses (Publications 12, 13, 14, 15, 17, 21 and 23). We showed the importance of phytohormone signals (Publications 1, 13 and 21) and the importance of roots (Publications #15, 17 and 23). We characterized additional regulators such as 14-3-3 protein (Publication #1), protein phosphatases (Publications #14), and copper ions (Publication #13).

Food and nutritional security: We have composed two important analytical reviews to prestigious scientific journals (*Lancet* and *Nature Plants*). We analyzed the factors affecting food security in China and the importance of legumes (including soybean) in global food and nutritional security.

6.2 Potential for further development of the research and the proposed course of action

(maximum half a page)

Through this research, we have built important research platforms (bioinformatics, genetics, molecular biology, biochemistry and physiology), consolidated strong collaborations (local, China, and global), generated useful genomic information and genetic materials. These are valuable resources to research in crop sciences.

To build on this solid background, the extended local team has submitted a proposal to the Area of Excellence Scheme titled "Center for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security". As a team, we will continue to seek funding opportunities to maintain our research momentum.

Another effort is to build an international consortium of legume research. The current task is to assess the impacts of legume research and cultivation in developing countries. We have already received positive responses from scientists from USA, UK, Australia, Netherlands, South Africa, Argentina, Japan, and China. We are plan to apply for international funding to support our endeavor.

- 6.3 Research collaboration achieved (please give details on the achievement and its relevant impact)
 - a. Collaboration with BGI Shenzhen, Chinese Academy of Agricultural Sciences, Kazusa DNA Research Institute (Japan) and University of Hong Kong (HKU)

Through collaborations with colleagues in BGI-Shenzhen, the Chinese Academy of Agricultural Sciences, and Kazusa DNA Research Institute, we developed a bioinformatics platform to study soybean germplasm and identified important genes therein. One prominent example was to clone the casual gene of a major salt tolerance QTL in wild soybean (*Nature Communications* 5:4340).

b. Collaboration with agricultural institutes in Mainland China

Since we have constructed new genetic materials and obtained important information during our basic scientific research, we have established collaboration with various agricultural institutes in Mainland China. One successful example of these collaborations is the generation of two new stress tolerant soybeans cultivars, Longhuang 1 and Longhuang 2. These lines have obtained approval from Gansu Province in 2015 to release to farmers for cultivation use (see Certificates).

c. Collaboration with World Universities Network (WUN) Soybean Research Team

Our research achievement has attracted attention of international colleagues. We are included in a team of scientists from the World University Network to promote legume research and application worldwide. Together, we have submitted a white paper to the UN (<u>http://www.wun.ac.uk/files//researchgroups/wun_legumes_policy_document.pdf</u>) and published an important perspective (*Nature Plants* 2:16112).

7. The Layman's Summary

(describe <u>in layman's language</u> the nature, significance and value of the research project, in no more than 200 words)

In this completed project, we have successfully employed state-of-the-art genomic technologies to uncover important genes and stress tolerance mechanisms in soybean. We demonstrated the importance of utilization of wild germplasms in crop improvement. These findings have been published in important scientific journals.

We have also composed analytical reviews published in prestigious scientific journals (*Lancet* and *Nature Plants*) to discuss on the factors that affect food supplies and food safety in China and how neglecting legumes has compromised global food and nutritional security. We carefully argued that adequate supplies and high quality food is the key for good health, while cultivation of legumes such as soybean contributes to the sustainable agriculture in China and worldwide.

In addition to academic research, we collaborated with breeders in China to develop stress tolerant soybean cultivars. Two newly-bred stress tolerant soybean lines were approved by the Gansu Province to release to farmers.

We have established a strong research team in Hong Kong comprised of scientists of complementary expertise. We also formed an extensive and strong research networks with scientists in China and worldwide. We have made Hong Kong an important player of international crop genomic researches, for both academic advancements and potential applications.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The Latest St	tatus of Publica	itions		Author(s)	Title and	Submitted	Attached	Acknowle	Accessible
Year of	Year of	Under	Under	(denote the	Journal/Book	to RGC	to this	dged the	from the
publication	Acceptance	Review	Preparation	corresponding	(with the	(indicate	report	support of	institutional
1	(For paper		(optional)	author with an	volume, pages	the year	(Yes or	RGC (Yes	repository
	accepted but			asterisk*)	and other	ending of	No)	or No)	(Yes or No)
	not vet				necessary	the			
	published)				publishing	relevant			
	puolisiicu)				details	progress			
					specified)	report)			
						• •			
2013			1	(#1) W. Xu, L.	The Tomato	2013	Yes	Yes	No
				Jia, W. Shi, F.	14-3-3 Protein				
				Baluška, H. J.	TFT4				
				Kronzucker,	Modulates H+				
				J. Liang and J.	Efflux,				
				Zhang*	Basipetal Auxin				
					Transport, and				
					the PKS5-J3				
					Pathway in				
					the Root				
					Growth				
					Response to				
					Alkaline Stress.				
					Plant Physiol.				
					163:				
					1817-1828.				
2013				(#2) A.CS.	Monitoring	2013	Yes	Yes	No
				Yu, J.FC.	bacterial				
				Loo, S. Yu,	growth using				
				SK. Kong*	tunable				
				and TF.	resistive pulse				
				Chan*	sensing with a				
					pore-based				
					technique.				
					Appl.				
					Microbiol.				
					Biotechnol. 98:				
					855-862.				
2013				(#3) SK. Li,	Organism-	2013	Yes	Yes	No
				JW. Zhou, A.	specific rRNA				
				KY. Yim, A.	capture system				
				KY. Leung,	for application				
				S. KW.	in				
				Tsui, TF.	next-generation				
				Chan and T.	sequencing.				
				CK. Lau*	PLoS ONE 8:				
					e74286.				
2013				(#4) YS. Ku,	Drought stress	2013	Yes	Yes	No
				WK.	and tolerance in				
				Au-Yeung,	soybean. In: "A				
				YL. Yung,	Comprehensive				
		1	1	MW. Li.	Survev of			1	

			CQ. Wen, X.	International				
			Liu and	Sovbean				
			H-M Lam*	Research -				
			11,-1,1, Lam .	Constian				
				Denetics,				
				Physiology,				
				Agronomy and				
				Nitrogen				
				Relationships".				
				J.E. Board				
				(ed.). InTech				
				Education and				
				Publishing.				
				Austria				
				nn200,237				
2012				$\frac{pp209-237}{pp209}$	2012	X 7	X 7	NT
2013			(#5) 1H.	The GmCLCI	2013	res	res	NO
			Wong, MW.	protein from				
			Li, XQ. Yao	soybean				
			and HM.	functions as a				
			Lam*	chloride ion				
				transporter. J.				
				Plant Physiol.				
				170 :101-104.				
2013			(#6) MW Li	Silicon era of	2013	Yes	Yes	No
2015			$\mathbf{X} \rightarrow \mathbf{M} \mathbf{N}$	carbon-based	2015	105	105	110
			and \mathbf{U} M	life: application				
			anu n 1vi.	ine. application				
			Lam	of genomics				
				and				
				bioinformatics				
				in crop stress				
				research. Int. J.				
				Mol. Sci.				
				14 :11444-1148				
				3.				
2013			(#7) HM .	Food supply	2013	Yes	Yes	No
			Lam I	and food safety				
			Remais M -C	issues in China				
			Fung I Yu	Lancot				
			and S.S. M	281 ,2014 2052				
			and $S.Sivi$.	301 .2044-2035.				
				a .	2011	* *	* *	
2013			(#8) Y. Lu,	Comparative	2014	Yes	Yes	No
			HM. Lam,	metabolomics				
			E. Pi, Q. Zhan,	in <i>Glycine max</i>				
			S. Tsai, C.	and Glycine				
			Wang, Y.	<i>soja</i> under				
			Kwan and	salt stress To				
			SM. Ngai*	reveal the				
			and a second second	phenotypes of				
				their offspring				
				I Agric Food				
				Cham				
				61 .0711_0721				
2014				51.0/11 = 0/21.	2014	V	V	NT.
2014			(#9) L.X.	Ectopic	2014	res	res	INO
			Deng, F.	expression of				
			Chen, L.	GmPAP3				
			Jiang, HM.	enhances salt				
			Lam and G.	tolerance in rice				
			Xiao*	by alleviating				
				oxidative				
				damage. <i>Plant</i>				
				Breed				
				133.348_355				

-	 T	1		-	1	Г	Т	T
2014			(#10) C. Chan and HM. Lam*	A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. <i>Plant</i> <i>Cell Physiol.</i> 55 :570-579.	2014	Yes	Yes	No
2014			MW. Li, M. Xie, X. Liu, M. Ni, G. Shao, C. Song, A.KY. Yim, Y. Tao, FL. Wong, S. Isobe, CF. Wong, KS. Wong, C. Xu, C. Li, Y. Wang, R. Guan, F. Sun, G. Fan, Z. Xiao, F. Zhou, TH. Phang, X. Liu, SW. Tong, TF. Chan, SM. Yiu, S. Tabata. J. Wang, X. Xu* and HM. Lam *	a novel salt tolerance gene in wild soybean by whole-genome sequencing. <i>Nat. Commun.</i> 5 :4340.	2014			
2013			(#12) A.N.M.R. Bin Rahman and J. Zhang*	Rayada specialty: the forgotten resource of elite features of rice. <i>Rice</i> 6 : 41.	2016	Yes	Yes	No
2014			(#13) N. Ye, H. Li, G. Zhu, Y. Liu, R. Liu, W. Xu, Y. Jing, X. Peng and J. Zhang *	Copper Suppresses Abscisic Acid Catabolism and Catalase Activity, and Inhibits Seed Germination of Rice. <i>Plant Cell</i> <i>Physiol.</i> 55 : 2008–2016.	2016	Yes	Yes	No
2015			(#14) R. Liu, Y. Liu, N. Ye, G. Zhu, M. Chen, L. Jia, Y. Xia, L. Shi, W. Jia and J. Zhang *	AtDsPTP1 acts as a negative regulator in osmotic stress signalling during <i>Arabidopsis</i> seed germination and seedling establishment	2016	Yes	Yes	No

			<i>Exp. Bot.</i> 66 : 1339–1353.				
2014		(#15) Md.M. Hossain, X. Liu, X. Qi, HM. Lam and J. Zhang *	Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. <i>Crop</i> J. 2:366-380.	2016	Yes	Yes	No
2015		(#16) S. Zhao, F. Zheng, W. He, H. Wu, S. Pan and HM. Lam*	Impacts of nucleotide fixation during soybean domestication and improvement. <i>BMC Plant</i> <i>Biol.</i> 15 :81.	2016	Yes	Yes	No
2015		(#17) C. Ju, R. J. Buresh, Z. Wang, H. Zhang, L. Liu, J. Yang* and J. Zhang *	Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. <i>Field Crop Res.</i> 175 : 47–55.	2016	Yes	Yes	No
2015		(#18) H. Yang, C. Li, HM. Lam , J. Clements, G. Yan and S. Zhao*	Sequencing consolidates molecular markers with plant breeding practice. <i>Theor</i> . <i>Appl. Genet</i> . 128 :779-795.	2016	Yes	Yes	No
2015		(#19) A.KY. Yim, J.WH. Wong, YS. Ku, H. Qin, TF. Chan and HM. Lam*	Using RNA-seq data to evaluate reference genes suitable for gene expression studies in soybean. <i>PLoS</i> <i>ONE</i> 10 :e0136343.	2016	Yes	Yes	No
2015		(#20) Y.S. Ku, J.WH. Wong, Z. Mui, X. Liu, J.HL. Hui, TF. Chan and HM. Lam *	Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods. <i>Int. J.</i> <i>Mol. Sci.</i> 16 : 24532-24554	2016	Yes	Yes	No

2015		(#21) Md. M.	Responses in	2016	Yes	Yes	No
		Hossain,	gas exchange				
		HM. Lam	and water status				
		and I Zhang*	hetween				
		and 5. Zhang	drought tolerant				
			and -susceptible				
			soybean				
			genotypes with				
			ABA				
			application.				
			Crop J. 3 :				
			500-506				
2015		(#22) E D:*	Machaniama of	2016	Vac	Vac	No
2013		$(#22) E. PI^*,$	Mechanishis of	2010	res	res	INO
		L. Qu, J. Hu,	Soybean Roots				
		Y. Huang, L.	Tolerances to				
		Qiu, H. Lu, B.	Salinity				
		Jiang, C. Liu,	Revealed by				
		T. Peng, Y.	Proteomic and				
		Zhao, H.	Phosphoproteo				
		Wang S-N	mic				
		Tsai S -M	Comparisons				
		Ngoi* and I	Rotwoon Two				
		ngar and L.	Cultic and M				
		Dur	Cultivars. Mol.				
			Cell.				
			Proteomics:				
			15 :266-288.				
2016		(#23) G. Chu,	Agronomic and	2016	Yes	Yes	No
		Z. Wang, H.	Physiological				
		Zhang I	Performance of				
		Vang* and I	Rice under				
		Tang and J.					
		Znang*					
			Crop				
			Management.				
			Agron. J.				
			108 :1–12.				
2016		(#24) N.	Use of	2016	Yes	Yes	No
		Munoz. MW.	proteomics to				
		LiS-M	evaluate				
		Ngai and	sovhean				
		U M Lom*	rosponso undor				
			response under				
			abiotic stresses.				
			In "Abiotic and				
			Biotic Stresses				
			in Soybean				
			Production". M.				
			Miransari (ed.).				
			Academic				
			Press Oxford				
			nn79-105				
2016		(#25) M W	OTL_{c}	2016	Vac	Vac	No
2010		(# 23) WIW.		2010	1 68	1 68	TAO .
		L1, N. B.	regulating the				
		Munoz, CF.	contents of				
		Wong, FL.	antioxidants,				
		Wong, KS.	phenolics and				
		Wong,	flavonoids in				
		J.WH.	sovbean seeds				
		Wong X Oi	share a				
		K_DIIMC	common				
		$\mathbf{N}_{\alpha} \text{ and } \mathbf{H} \mathbf{M}_{\alpha}$	common arrive				
			genomic region.				
		Lam^	r ront. Plant				
1		1	DCL 7:854				

2016		(#26) P. Wei,	GmCLC1	2016	Yes	Yes	No
		L. Wang, A.	confers				
		Liu, B. Yu*	enhanced salt				
		and HM.	tolerance				
		Lam*	through				
			regulating				
			chloride				
			accumulation in				
			sovbean. Front.				
			Plant Sci.				
			7:1082.				
2016		(#27) C H	Neglecting	2016	Yes	Yes	No
2010		Fover* \mathbf{H} - \mathbf{M} .	legumes has	2010	105	105	110
		Lam H T	compromised				
		Nguyen K H	human				
		M Siddique	health and				
		R K	sustainable				
		Varshnev T	food				
		D Colmer W	production				
		Cowling H	Nat Plants 2.				
		Bramley T Δ	16112				
		Mori I M	10112.				
		Hodgson I					
		W Cooper A					
		Millor K					
		J. WIIICI, K.					
		Kullelt, J.					
		$C_{\rm ullio}$ I A					
		Cullis, J. A.					
		Uzga, M. L. Wahlawist V					
		Waniqvist, 1.					
		Liang, H.					
		Shou, K. Shi,					
		J. IU, N. Esdar D. N					
		Fodor, B. N.					
		Kaiser, FL.					
		Wong, B.					
		Valliyodan,					
		and M. J.					
		Considine	~				
	2016	(#28) Y. Sun,	Comparison of	2016	Yes	Yes	No
		Z. Mu1, X.	small KNA				
		L1u, A. KY.	profiles of				
		Yim, H. Qin,	Glycine max				
		FL. Wong,	and Glycine				
		TF. Chan,	<i>soja</i> at early				
		SM. Yiu,	developmental				
		HM. Lam *,	stages. Int. J.				
		B L Lim *	Mol Sci				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each conference abstract*)

Month/Year/	Title	Conference Name	Submitted to	Attached to	Acknowledged	Accessible from
Place	1110		RGC (indicate	this report	the support of	the institutional
			the year ending	(Yes or No)	RGC	repository
			of the relevant		(Yes or No)	(Yes or No)
			progress report)			
June 2012;	Whole-genome-	Gordon	2013	Yes	Yes	No
Hong Kong	sequencing assisted	Research				
-C01	genetic studies to identify	Conference: Salt				
	salinity stress tolerance	and Water Stress				
	genes/alleles from wild	in Plants.				
	soybean.					
August	Whole-genome-	The	2013	Yes	Yes	No
2012,	sequencing assisted	10 th Cross-Strait				
Shihezi,	genetic studies of	Symposium on				
PRC-C02	soybean.	Plant Molecular				
		Biology and				
		Biotechnology.				
November	Whole-genome-	The 7th	2013	Yes	Yes	No
2012, Hong	sequencing assisted	International				
Kong-C03	genetic studies of wild	Conference on				
	soybean.	Genomics &				
		Bio-IT APAC.				
December	Soybean genetic research	Shenzhen	2013	Yes	Yes	No
2012,	in the era of genomics.	International				
Shenzhen,		Biotech				
PRC-C04		Innovation				
		Forum &				
		Exhibition.				
February	Applying a	World Soybean	2013	Yes	Yes	No
2013,	whole-genome-sequencin	Research				
Durban,	g strategy to study the	Conference				
South	wild soybean genome.	2013				
Africa-C05						
February	Identification of small	World Soybean	2013	Yes	Yes	No
2013,	RNA genes in the wild	Research				
Durban,	soybean (Glycine soja)	Conference				
South	with a salt-tolerant	2013				
Africa-C06	phenotype.					
February	Understanding of histone	World Soybean	2013	Yes	Yes	No
2013,	H3 phosphorylation and	Research				
Durban,	acetylation on	Conference				
South	enhancement of the	2013				
Africa-C07	soybean tolerance to					
	salinity via proteomic					
	profile.					
February	Comparative	World Soybean	2013	Yes	Yes	No
2013,	metabolomics analysis of	Research				
Durban,	seedling leaves from ten	Conterence				
South	different salt-tolerant	2013				
Africa-C08	soybean varieties under					
	normal and salt stress					
	conditions.	1				

April 2013, Nanjing, PRC-C09	Genomic studies to identify important loci in wild soybean.	WDD 2013 - BIT's 4th Annual World DNA and Genome Day.	2013	Yes	Yes	No
July 2013, Vancouver, Canada-C10	A putative lambda class glutathione-S-transferase gene in the wild soybean interacts with polyphenolic metabolites which promote plant growth and enhance survival under salinity stress.	Annual Meeting of Plant Signaling and Behavior	2013	Yes	Yes	No
November 2013, Hong Kong-C11	Soybean genetic research in the era of genomics.	The 4 th Symposium on Systems and Synthetic Biology	2013	Yes	Yes	No
July 2014, Portland, Oregon-C12	Identification of a putative causal gene of salinity tolerance in soybean.	Plant Biology 2014 Annual Scientific Meeting of the American Society of Plant Biologists	2014	Yes	Yes	No
April 2015, Shenzhen, China-C13	Genomic and molecular studies of salt tolerance in soybean	The Biennial Conference and the 15th Congress of the Chinese Society for Cell Biology. Organizer: Chinese Society for Cell Biology	2016	Yes	Yes	No
November 2015, Shenzhen, China-C14	Exploring wild soybean using a genomic approach.	Nature Conference – Agricultural Genomics 2015: From Variation to Improved Production	2016	Yes	Yes	No
November 2015, Hangzhou, China-C15	Genomic and molecular studies of stress tolerance in soybean.	Legumes2020	2016	Yes	Yes	No

10. *Student(s) trained* (please attach a copy of the title page of the thesis)

Name	Degree registered for	Date of registration	Date of thesis
			submission/ graduation
Pan, Shengkai	M.Phil. (Analysis of fixed SNP reveals	2010	2013
	insight of morphology differences		
	between wild and cultivated soybeans)		
Chan Ching	Ph.D. (Biochemical and functional study	2010	2013
	of a putative Lambda class		

	glutathione-S-transferase gene in the wild	1		
	soybean)			
Li, Man-Wah	Ph.D. (Identification of a putative causal	2011	2014	
	gene of salinity tolerance in soybean)			
Qi, Xinpeng	Ph.D. (Quantitative trait locus (QTL)	2010	2014	
	mapping of important agronomic traits			
	using soybean genomic information)			
Zhao, Shancen	Ph.D. (Impacts of nucleotide fixation	2010	2015	
	during soybean domestication and			
	intensive breeding)			

- **11. Other impact** (*e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.*)
 - a. Award of patents:

There are 3 China Patents and 3 Hong Kong Patents approved within the period of this project (see Patents).

China patents:

- GMRD22-樣基因及其保護抵禦非生物應激的應用 (GmRD22-like genes and use thereof to protect against abiotic stress) (Patent No. CN101548013B) (March 21, 2012)
- 減輕植物非生物脅迫的方法 (Method to alleviate abiotic stress in plants) (Patent No. CN101541165B) (May 15, 2013)
- 含 J- 結構域蛋白質賦予的非生物應激耐受 (Abiotic stress tolerance conferred by J-domain-containing proteins) (Patent No. CN101553569B) (June 12, 2013)

Hong Kong Patents:

- GmRD22-like genes and use thereof to protect against abiotic stress (Patent No. 1137776) (December 7, 2012)
- Method to alleviate abiotic stress in plants (Patent No. HK1132878) (September 19, 2013)
- Abiotic stress tolerance conferred by J-domain-containing proteins (Patent No. HK1138033) (March 14, 2014)
- b. Generation of new soybean lines:

One indirect output of this research is the production of various soybean lines that are stress tolerance and the accumulation of a large volume of genetic information. Based on these indirect outputs and through collaborations with agricultural scientists in Mainland China, we generated two new soybean lines that have been approved by the Gansu Province in 2016 to release to farmers for cultivation use (see Certificates).

c. Public education

As a technology transfer activity to the public, our soybean research was selected for exhibition by the Hong Kong Science Museum at their Science News Corner from April 13 to July 31, 2013. In conjunction to this exhibition, the project coordinator also gave two educational seminars organized by the Education Bureau (June 26, 2013; attended by ~600 high school teachers and students) and one popular science lecture hosted by the HKSM (June 29, 2013; attend by ~100 general public). A video recording a snapshot of the soybean research is being shown in the exhibition room. This video

produced by the Education Bureau has won an award of excellence in the Indie Fest, an award of merit in the in Accolade File, Television, New Media and Videography Competition, and an award of merit in the Chicago International Film Festival TV Award. The video is also available in a public education website:

http://minisite.proj.hkedcity.net/stds_sci/cht/Video_of_Scientist/soybean_homecoming.htm 1

d. Team building in Hong Kong

Expanding from the core CRF team, we have established the Center for Soybean Research at CUHK (see CRF team). This Center consisted of 13 PIs from CUHK, 2 PIs from HKU and 1 PI from HKBU. New members have given additional inputs to optimize our research strategies.

Project Coordinator