RGC Reference: CUHK1/CRF/12G please insert ref. above

The Research Grants Council of Hong Kong Collaborative Research Fund Group Research Projects Completion Report

(for completed projects only)

Part A: The Project and Investigator(s)

1. Project Title

Functional Plasmonics with Energy Localization for Sensing, Nano-Actuation and Optoelectronics

2. Investigator(s) and Academic Department/Units Involved (please highlight approved changes in the composition of the project team and quote the date when RGC granted approval of such changes)

			Average number of hours per week spent on this project in
Descent Term	Nama /Daat		the current
Research Team	Name/Post	Unit/Department/Institution	reporting period
Project	Ho, Ho-pui	Electronic Engineering/CUHK	5
Coordinator	Aaron/Professor		
Co-Principal investigator(s)	Chan, Che Ting/Chair Professor	Physics/HKUST	1
	Cheah, Kok Wai/Chair Professor	Physics/HKBU	1
	Choy, Chik Ho	Electrical and Electronic	1
	Wallace/ Professor	Engineering/HKU	
	Li, Tsan Hang Jensen/Senior Lecturer	Physics/U. of Birmingham, UK	1
	Kong, Siu Kai/Professor	School of Life Sciences/CUHK	1
	Ong, Hock Chun/Associate Professor	Physics/CUHK	1
	Pun, Yue Bun Edwin/Chair Professor	Electronic Engineering/CityU	1
	Surya,	Electronic and Information	1
	Charles/Professor	Engineering/PolyU	

	Wang, Jianfang/Professor	Physics/CUHK	1
	Wong, Kam Sing/Professor	Physics/HKUST	1
	Xu, Jian-Bin/Professor	Electronic Engineering/CUHK	1
Collaborators/ Others	N/A	N/A	

3. Project Duration

	Original	Revised	Date of RGC Approval (must be quoted)
Project Start Date	1 st March 2013	N/A	6 th February 2013
Project Completion Date	29 th February 2016	N/A	6 th February 2013
Duration (in month)	36	N/A	6 th February 2013
Deadline for Submission of Completion Report	28 th February 2017	N/A	N/A

Part B: The Final Report

5. **Project Objectives**

- 5.1 Objectives as per original application
 - 1. Investigation of plasmon excitation in artificial metallic nanostructures and their variants through theoretical and experimental studies for generating energy localization and strong optical forces.
 - 2. Development of plasmonic device strategies for surface plasmon-mediated applications.
 - 3. Demonstration of a feasible platform integrating plasmonic biosensing as well as optical manipulation for conducting SERS, SPR, and multi-photon analysis.
 - 4. Demonstration of plasmonic organic photovoltaics and light-emitting diodes with enhanced energy conversion and photon-extraction efficiencies.
 - 5. Establishment of a synergistic multidisciplinary research community for the advancement of plasmonics technology.
- 5.2 Revised objectives

Date of approval from the RGC: <u>5th March 2013</u>

Reasons for the change: <u>Reduction in funding as compared to the amount</u> requested in the original proposal.

- 1. Investigation of plasmon excitation in artificial metallic nanostructures and their variants through theoretical and experimental studies for generating energy localization and strong optical forces.
- 2. Development of plasmonic device strategies for surface plasmon-mediated applications.
- 3. Demonstration of a feasible platform integrating plasmonic biosensing as well as optical manipulation for conducting SERS, SPR, and multi-photon analysis.
- 4. Establishment of a synergistic multidisciplinary research community for the advancement of plasmonics technology.

6. Research Outcome

6.1 Major findings and research outcome *(maximum 1 page; please make reference to Part C where necessary)*

- 1. Common-path spectral surface plasmon resonance interferometric sensing with 10⁻⁷ RIU resolution and measurement range of 0.1 RIU (CU#11, CU#24)
- 2. Cytotoxic and sublethal effects of silver nanoparticles on stem-cells (CU#26)
- 3. Squeezing the local density of state (LDOS) in a hybrid dielectric-plasmonic ring structure for ultrasensitive plasmonic sensing (CU#5)
- 4. Establishment of the general condition of "absorption rate = radiative decay rate" for achieving best field enhancement in sensing devices based on 2-dimensional periodic plasmonic structures (CU#0, CU#1, CU#2, CU#3, CU#4)
- 5. Efficient nano-optical trapping and microfluidic actuations based on plasmon-induced localized heating (CU#6, CU#7, CU#8)
- 6. Demonstration of new metasurface holograms based on periodic plasmonic structures (CITYU#0)
- 7. Novel colloidal synthesis of periodic plasmonic nanostructures on transparent substrates (HKU#7)
- 8. New plasmonic gratings from random nanoparticles (HKU#0)
- 9. New class of room-temperature solution-process nano-metal flexible electrode (HKU#7)
- 10. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths (CU#9)
- 11. Plasmonic and structural evolutions during the sulfidation of silver nanocubes (CU#13)
- 12. SERS using metal nanoparticle multi-layer graphene nanospacer (HKU#5)
- 13. Breaking the space charge limit in organic solar cells OSCs by a novel plasmonic-electrical conduction approach (HKU#3)
- 14. Enhanced OSC performance by varying the morphologies of plasmonic nanoparticles (POLYU#0)
- 15. Graphene/Silicon heterojunction based high performance photodetector (CU#18, CU#19, CU#20)
- 16. Circular polarized SHG in single-layered gold sawtooth structures (UST#1)
- 17. SERS based on a "trap-and-sense" strategy enabled by plasmonic localized heating (CU#22)
- 18. Photon-free trapping based on localized thermal heating effects (CU#23)

6.2 Potential for further development of the research and the proposed course of action *(maximum half a page)*

This project has initiated a new research direction based on plasmon-absorption induced heating effects. This topic involves a broad range of physical processes diffusion. domain of nano-science, namely fluidics, thermal within the thermo-mechanical forces and photo-acoustics. The PC and members of the project team (CT Chan, HC Ong, SK Kong) will continue to pursue in studying the details of thermo-mechanical forces through conducting extensive trapping and fluidic flow imaging experiments, as well as finite-element modelling (FEM), to map out the dynamic characteristics of fluids surrounding the plasmonic nano-structure. While new application opportunities such as (i) ultrafast spatial switching of nano-heaters by taking advantage of plasmon resonances and (ii) amplification of nucleic acids with ultra-low sample volume through temperature cycling by plasmonic absorption, one direction, currently ongoing within the PC's group, is to explore scanning nano-acousto-microscopy through plasmonic absorption of femto-second (fs) laser pulses in random nano-islands deposited on a fiber-tip.

Another potential area for further development is the exploration of surface plasmon resonance (SPR) biosensors based on spectral-phase analysis. This project has demonstrated the merits of sensitivity and measurement range of the spectral phase detection approach. Currently, the PC is developing a Fourier-Transform spectrometer, akin to the interferometers developed for optical coherence tomography (OCT), for achieving a highly compact SPR biosensing system. Ultimately, we are aiming for commercialization of the technology.

- 6.3 Research collaboration achieved (please give details on the achievement and its relevant impact)
 - Mike Somekh (Department of Electronic and Information Engineering, Hong Kong Polytechnic University) Plasmon-absorption induced ultrasound for nano-acousto-microscopy. The aim is to perform non-electromagnetic microscopy with GHz ultrasound generated through plasmonic absorption of fs laser pulses and focusing using a polymer lens. The impact is significant as high resolution microscopy below the 100nm regime is currently only achievable with electromagnetic radiation. Acoustic radiation, due to its heavy attenuation at high frequencies, has never been able to provide spatial resolution beyond the micrometer regime. With the plasmonic-absorption induced heating work established through this project, GHz ultrasound pulses have been generated by guiding fs laser pulses to an Au-coated fiber tip. Further efforts are now ongoing to fabricate a polymer based zone plate lens in front of the fiber tip to generate the final ~100nm focal spot. Since the fiber tip is a well-suited for scanning operations, we anticipate that this work will lead to a practical nano-acousto-microscope.
 - Donghyun Kim (Department of Electrical and Electronic Engineering, Yonsei University) Surface plasmon polariton (SPP) mediated nano-microscopy with metallic random nano-islands. The project PC spent two weeks in February 2015 visiting Professor Kim at Yonsei University. The extended meeting resulted in

using the plasmonic nano-island approach for high resolution optical microscopy based on field location in the random islands. This approach requires simple annealing steps and there is virtually no limitation on the area of the substrate. Hot-spots are always available anywhere within the substrate.

 Sai Tak Chu (Department of Physics and Materials Science, City University of Hong Kong) – Optical trapping with ultrahigh-Q resonant rings. While integrated optical waveguides are known to be able to generate evanescent field that can perform optical trapping of objects, the significance of this work comes from the fact that ultrahigh-Q ring resonators can generate massive increase in field intensity within the ring structure. Preliminary results have already confirmed a significant reduction in trapping threshold. Through controlling the power balance between the counter propagating power coupling ports, we can manipulate the optical interference within the ring and thus gaining the possibility to control the movement of the trapped objects along the ring. The next stage is to deposit a layer of plasmonic random nano-islands directly above the ring and look for further reduction in trapping threshold as well as improvement in spatial resolution. This work will ultimately lead to practical integrated waveguide devices that can perform both trapping and sensing operations and be directly integrated to microfluidic systems.

7. The Layman's Summary

(describe *in layman's language* the nature, significance and value of the research project, in no more than 200 words)

When electromagnetic field impinges at the surface of a metal object, the field strength immediately becomes enhanced because of the induced oscillatory movement of the free electrons inside. These oscillations are also called surface plasmons. Plasmonics is a new term that collectively describes the science and technology of this effect. Surface plasmons have many desirable attributes, including amplification of intensity near a metal surface and strong field localization within the nanometer scale. Such properties are very attractive for a wide range of photonics applications. One excellent example of which is the plasmonic biosensor, capable of detecting biomolecules in extremely low concentration levels. Because of plasmonics, optical traps for the manipulation of nano-sized objects have become possible.

This project aims to investigate the design and application of nano-structures that possess "hotspots" with highly intensified optical intensity levels. We shall also demonstrate their unique merits in several applications including "label-free" bio-detection (i.e., no requirement of fluorescent tags), non-linear optical activities, polarisation manipulation, nano-optical trapping, organic solar cells and light-emitting diodes. In addition, knowledge gained through this project on the management of electromagnetic field has impacts in many applications where light-matter interaction is of prime importance.

Part C: Research Output

8. Peer-reviewed journal publication(s) arising <u>directly</u> from this research project

(Please attach a copy of the publication and/or the letter of acceptance if not yet submitted in the previous progress report(s). All listed publications must acknowledge RGC's funding support by quoting the specific grant reference.)

The	Latest Status	of Publicat	tions	Author(s)	Title and			Acknowle	
Year of publication	Year of Acceptance (For paper accepted but not yet published)	Under Review	Under Preparation (optional)	(denote the corresponding author with an asterisk*)	Journal/Book (with the volume, pages and other necessary publishing details specified)	the year ending of the	report (Yes or	support of RGC (Yes or No)	
CU#0 2014				ZhaoLong Cao, Lei Zhang, Chung-Yu Chan, and Hock-Chun Ong*	Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays, Opt. Lett. 39, 501-503 (2014)	Yes (2014)	Yes	Yes	No
CU#1 2014				ZhaoLong Cao, and Hock-Chun Ong*	Determination of the absorption and radiative decay rates of dark and bright plasmonic modes, Opt. Exp. 22, 16114-16129 (2014)	Yes (2014)	Yes	Yes	No
CU#2 2013				ZhaoLong Cao, and Hock-Chun Ong*	Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array, App. Phys. Lett. 102, 241109 (2013)	Yes (2014)	Yes	Yes	No
CU#3 2013				C.Y. Chan, Z.L. Cao, and H.C. Ong*		Yes (2014)	Yes	Yes	No

							I
			(SERS), Opt. Exp. 21, 14674-82 (2013)				
CU#4 2014		Z. L. Cao, S. L. Wong, S. Y. Wu, H. P. Ho,	High performing phase-based surface plasmon	Yes (2014)	Yes	Yes	No
		and H. C. Ong*					
CU#5 2014		Yanyan Zhou, Xia Yu, Feng Luan, Jianbin Xu, Hock-Chun Ong, and Ho-Pui Ho*	Dressing plasmon resonance with particle-microca vity architecture for efficient nano-optical trapping and sensing, Optics Letters, 39, 873-876 (2014)		Yes	Yes	No
CU#6 2014		Haifei Lu, Jiajie	nano-disks as nano-optical	Yes (2014)	Yes	Yes	No
CU#7 2015		Siu-Kai Kong, Ken-Tye Yong, and Ho-Pui Ho*	nano-island substrates, Scientific Reports 5, 9978 (2015)	Yes (2014)	Yes	Yes	No
CU#8 2015		Jiajie Chen, Zhiwen Kang, Guanghui Wang, Fong-Chuen Loo, Siu-Kai Kong and Ho-Pui Ho*	Optofluidic Guiding, Valving, Switching and Mixing based on Plasmonic Heating in Random Gold Nanoisland Substrate, Lab Chip 15, 2504 (2015)	Yes (2014)	Yes	Yes	No

· · · ·	- /					1	
CU#9 2014				Yes (2014)	Yes	Yes	No
CU#10 2013		Law, Yating Zhang, Rui Hu,	Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement, Sensors and Actuators B 176, 1128-1133 (2013)	No	Yes	No (The project PC helped in the analysis of field enhancem ent between AuNP and the Au underlay, also the hardware setup for differentia l phase detection.)	
CU#11 2013		and Ho Pui Ho*	Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing, Opt. Exp. 21, 20268-20273(20 13)	No	Yes	No (This project has provided hardware and technical support for the work reported in this publicatio n.)	No
CU#12 2014		Shuwen Zeng, Dominique Baillargeat, Ho-Pui Ho and Ken-Tye Yong*	Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev. 43, 3426-3452 (2014)	Yes (2014)	Yes	No (The PC has contribute d to the writing of this review article. Some of the data reported in this article were produced through	No

					this project.)	
CU#13 2013	Jianfang	Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes, ACS Nano 7, 9354-9365 (2013)	Yes (2014)	Yes	Yes	No
CU#14 2014	Lei Shao, Qifeng Ruan, Ruibin Jiang, and Jianfang Wang*	Macroscale	Yes (2014)	Yes	Yes	No
CU#15 2014	Lei Shao, Yiwei Shu, Jianfang Wang,* and Hongkai Wu*	Growth of	Yes (2014)	Yes	Yes	No
CU#16 2016	Ho-Pui Ho*	Surface-enhance d Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands, Nanoscale 8, 10266 (2016)	No	Yes	Yes	No
CU#17 2013	Jiajie Chen, Zhiwen Kang, Siu Kai Kong, and Ho-Pui Ho*	Plasmonic random nanostructures	No	Yes	Yes	No

			3926-3929 (2013)				
CU#18 2013		Xiaomu Wang, Zhenzhou Cheng, Ke Xu,Hon Ki Tsang, and Jian-Bin Xu*	High-responsivit y graphene/silicon- heterostructure waveguide photodetectors, Nature Photonics 7, 888–891 (2013)	No	Yes	Yes	No
CU#19 2015		Jiaqi Wang, Zhenzhou Cheng, Zefeng Chen*, Jian-Bin Xu, Hon Ki Tsang, and Chester Shu	Graphene photodetector integrated on	No	Yes	Yes	No
CU#20 2015		Zefeng Chen, Zhenzhou Cheng, Jiaqi Wang, Xi Wan, Chester Shu, Hon Ki Tsang, Ho Pui Ho, Jian-Bin Xu*	High Responsivity, Broadband, and	No	Yes	Yes	No
CU#21 2015		H.F. Lu, X. Ren, E.I. Wei, J.J. Chen, Z.W. Kang, H.X. Zhang, H.P. Ho and W. C. Choy*	Experimental and Theoretical Investigation of Macro-Periodic	No	Yes	Yes	No
CU#22 2016		Zhiwen Kang, Jiajie Chen and Ho-Pui Ho*	p07876 (2015). Surface-enhance d Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated	No	Yes	Yes	No

				-		
		microbubbles on				
		random gold				
		nano-islands,				
		Nanoscale 8,				
		10266-72				
		(2016).				
CU#23	Jiajie Chen,	Thermal gradient	No	Yes	Yes	No
			INO	res	res	INO
2016	Hengji Cong,	induced tweezers				
	Fong-Chuen	for the				
	Loo, Zhiwen	manipulation of				
	Kang, Minghui	particles and				
	Tang, Haixi	cells, Scientific				
	Zhang,	Reports 6, 35814				
	Shu-Yuen Wu,	(2016) DOI:				
	Siu-Kai Kong	10.1038/srep358				
	and Ho-Pui Ho*					
CU#24		A non-PCR SPR	No	Yes	Yes	No
2015	S.S. Wang,	platform using	110	105	105	110
2013		RNase H to				
	He, L. He, Y.C.					
	Guo, D.Y. Gu,	MicroRNA				
	H.C. Kwok,	29a-3p from				
	S.Y. Wu, H.P.	throat swabs of				
	Ho, W.D. Xie,	human subjects				
	Y.H. Shao and	with influenza A				
	S.K. Kong*	virus H1N1				
		infection,				
		Analyst 140,				
		4566-75 (2015)				
CU#25	F. Peng, J. He,	Identification of	No	Yes	Yes	No
2016	J.F. Loo, J. Yao,		110		1 00	1.0
2010	L. Shi, C. Liu,	Throat Swab as				
	C. Zhao, W.	the Biomarkers				
	Xie, Y. Shao,	for Diagnosis of				
	S.K. Kong,* D.					
	Gu	Med Sci. 25,				
GTT // B (77-84 (2016).				
CU#26	T.S. Cheung,	Cytotoxic and	No	Yes	Yes	No
2016		sublethal effects				
	Н.Р. Но, Р.Р.Ү.					
	Lui, S.K. Kong*	nanoparticles on				
		tendon-derived				
		stem cells-				
		implications for				
		tendon				
		engineering,				
		Toxicol. Res. 5,				
		318-330 (2016).				
HKU#0	Haifei Lu,	Broadband	No	Yes	Yes	No
2015	-	near-field	110	105	105	110
2013	Xingang Ren, Wai E. J. Sha					
	Wei E. I. Sha,	enhancement in				
	Ho-Pui Ho,	the				
	Choy Wallace*	macro-periodic				
		and				
		micro-random				
		structure with a				
		hybridized				
		excitation of				
		propagating				
		Bloch-plasmonic				
		and localized				
		surface-plasmoni				
		Isui lace-plasmoni				

		c modes, Nanoscale 7, 16798 (2015).				
HKU#1 2014	Wallace C. H. Choy*	The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells, Chem. Comm. 50, 11984-11993 (2014).	Yes (2014)	Yes	Yes	No
HKU#2 2014	A. Ng, W. K. Yiu, Y. S. Foo, Q. Shen, A. Bejaoui, Y. Y. Zhao, H. C. Gokkaya, A. B. Djurišić, J. A. Zapien, W. K. Chan and C. Surya*	Enhanced performance of PTB7:PC ₇₁ BM solar cells via different morphologies of gold nanoparticles, ACS Appl. Mater. Interfaces 6 (23), 20676–20684 (2014).	No	Yes	Yes	No
HKU#3 2014	Wei E. I. Sha, Xuanhua Li & Wallace C. H. Choy*	Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electr ical Concept, Scientific Reports 4, 6236 (2014).	Yes (2014)	Yes	Yes	No
HKU#4 2014	Wallace C. H. Choy *, Wei E. I. Sha, Xuanhua Li, and Di Zhang	Multi-Physical Properties of	Yes (2014)	Yes	Yes	No
HKU#5 2014	Xuanhua Li, Wallace C. H. Choy,* Xingang Ren, Di Zhang, and Haifei Lu	Highly Intensifi ed Surface	Yes (2014)	Yes	Yes	No

			System, Adv.				
			Functional Mat. 24, 3114–3122 (2014).				
HKU#6 2014		Choy,* Wai Kin Chan,* and Yuping Yuan	Recent Advances in Transition Metal Complexes and Light-Manageme nt Engineering in Organic Optoelectronic Devices, Adv. Mat., invited 26, 5368-5399 (2014).	Yes (2014)	Yes	Yes	No
HKU#7 2014	2 F a	Zhang, Xingang Ren, Jian Liu, and Wallace C. H. Choy*	Selective	Yes (2014)	Yes	Yes	No
HKU#8 2014	I H J K V C V	Xingang Ren, Kam Sing Wong, Michael Grätzel, and Wallace C. H. Choy*	Vacuum-assisted thermal-annealin g process to control CH ₃ NH ₃ PbI ₃ perovskite morphology for highly stable and efficient solar cells, ACS Nano 9, 639–646 (2014).	No	Yes	Yes	No
UST#0 2014	I J S	ſang, and Kam Sing Wong*	Aggregation Enhancement on Two-Photon Optical Properties of AIE-Active D TPE A Molecules, J. Phys. Chem. C, 118 (46), (2014)	No	Yes		No
UST#1 2016		W. Gao, J. Ma, Y. Zhong, W. Y. Tam, C. T. Chan and K. S. Wong*	Multipolar effects in the optical active second harmonic generation from sawtooth chiral metamaterials, Scientific	No	Yes	Yes	No

		Reports 6, 22061 (2016).				
UST#2 2015	X. L. Zhang, S. B. Wang, Z. F. Lin, H. B. Sun and C. T. Chan*	toroidal nanostructures:	No	Yes	Yes	No
UST#3 2015	C. Han, H. M. Leung, C. T. Chan and W. Y. Tam*	Giant plasmonic circular dichroism in Ag staircase nanostructures, Optics Express 23, 33065-33078 (2015).	No	Yes	Yes	No
UST#4 2015		A smooth CH ₃ NH ₃ PbI ₃ film via a new approach for forming the PbI ₂ nanostructure	No	Yes	Yes	No
UST#5 2015	Zonglong Zhu, Qifan Xue, Hexiang He, Kui Jiang, Zhicheng Hu, Yang Bai, Teng Zhang, Shuang Xiao, Kenan Gundogdu, Bhoj Raj Gautam, Harald Ade, Fei Huang, Kam Sing Wong,* Hin-Lap Yi, Shihe Yang and He Yan	A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell	No	Yes	Yes	No
UST#6 2015	Mei-Feng Xu, Hong Zhang, Su Zhang, Hugh L. Zhu, Hui-Min Su, Jian Liu,	A low	No	Yes	Yes	No

		Vom Cina	achiaving bist				
		Kam Sing Wong,*	achieving high performance				
			perovskite solar				
		Liang-Sheng Liao and	cells with no				
		Wallace C. H.					
			hysteresis, J.				
		Choy	Mater. Chem. A,				
LIOT #7		11 71	3, 14424 (2015)	NT	X 7	V	N
UST#7		Hong Zhong,	Pin-hole free and	No	Yes	Yes	No
2016		Jiaqi Cheng,	surface-nanostru				
		Francis Lin,	ctured NiOx film				
			by				
			room-temperatur				
		0 0/	e solution				
		Alex K. Y. Jen					
			achieving high				
		H. Choy*	performance				
			flexible				
			perovskite solar				
			cells with good				
			stability and				
			reproducibility,				
			ACS Nano 10,				
			1503 (2016);				
			DOI:				
			10.1021/acsnano				
			.5b07043				
UST#8			Circularly	No	Yes	Yes	No
2016			Polarized				
		Xinggui Gu, Lin					
		Guo, Kam Sing					
			Reflective-Photo				
		Ben Zhong	Chiral Nematic				
		Tang	Liquid Crystal				
			Display Based				
			on an				
			Aggregation-Ind				
			uced Emission				
			Luminogen,				
			Advanced				
			Optical				
			Materials 4, 534				
			(2016); DOI:				
			10.1002/adom.2				
	├ ─── │		01500646				
CITYU#0			Helicity	No	Yes	Yes	No
2015		Fuyong Yue,	multiplexed				
			broadband				
		Guoxing Zheng,					
			holograms, Nat.				
		Shumei Chen,	Comms. 6, 8241				
		Ming Chen,	(2015) DOI:				
		King Fai Li,	10.1038/ncomms				
		Polis Wing Han	9241				
		Wong, Kok Wai					
		Cheah, Edwin					
		Yue Bun Pun,*					
		Shuang Zhang					
	1 1	and Xianzhong					
		Chen					

CRF 8G (Revised Sep 15)

POLYU#0	I	A. Ng, W. K.	Enhanced	No	Yes	Yes	No
2014	Y	Yiu, Y. S. Foo,	performance of				
	(Q. Shen, A.	PTB7:PC71BM				
	E	Bejaoui, Y. Y.	solar cells via				
	Z	Zhao, H. C.	different				
	(Gokkaya, A. B.	morphologies of				
	I	Djurišić, J. A.	gold				
	Z	Zapien, W. K.	nanoparticles,				
	0	Chan and C.	ACS Applied				
	S	Surya*	Materials and				
			Interfaces 6,				
			20676-84 (2014)				

9. Recognized international conference(s) in which paper(s) related to this research project was/were delivered (*Please attach a copy of each conference abstract*)

FROM INTERIM REPORT

Month/Year/ Place C#1 Aug/2014/ Neuchatel,	Title Circular polarized second harmonic generation in single-layered gold	Conference Name 6th EPS-QEOD Europhoton Conference	Submitted to RGC (indicate the year ending of the relevant progress report) Yes 2014	Attached to this report (Yes or No) Yes	Acknowledged the support of RGC (Yes or No) Yes	Accessible from the institutional repository (Yes or No) No
Switzerland C#2 May/2014/ Singapore	sawtooth structures Optical trapping and sensing with hybrid plasmonic particle-microcavity structures	The 5th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META 2014)	Yes 2014	Yes	Yes	No
	Plasmonic Scattering Studies of Photo-chemically Generated Metallic Nanoparticles on Optical Fiber Double-tapers through Evanescent Field Interference	Research Symposium	Yes 2014	Yes	Yes (Acknowledged made during presentation)	No
Philadelphia, USA	Silver nanodecahedron based core-shell nanoparticles as surface enhanced Raman scattering (SERS) tags for labeling biomolecules	4th International Conference on Biomarkers & Clinical Research	Yes 2014	Yes	Yes (Acknowledged made during presentation)	No
C#5 August/2014/ Guangzhou	Tunable Plasmonic Absorption in Random Metallic Nano-islands for Optofluidic Applications	Progress in Electromagnetics Research Symposium (PIERS) 2014	Yes 2014	Yes	Yes (Acknowledged made during presentation)	No
C#6 August/2013/ Stockholm	Shape Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles for Efficient Organic Solar Cells	Progress in Electromagnetics Research Synmposium (PIERS 2013)	Yes 2014	Yes	Yes (Acknowledged made during presentation)	No

CRF 8G (Revised Sep 15)

C#7 July/2016/		OSA Advanced Photonics	No	Yes	Yes (Acknowledged	No
Vancouver	with in situ Surface Enhanced Raman Scattering Capability				made during presentation)	
C#8 Aug/2015/ Busan, South Korea	on Plasmonic Absorption	CLEO-Pacific Rim 2015	No	Yes	Yes (Acknowledged made during presentation)	No
C#9 June/2015/ Singapore	Fiber Tip as Plasmonic Optical Tweezers	ICMAT2015 & IUMRS-ICA2015	No	Yes	Yes (Acknowledged made during presentation)	No
C#10 July/2015/ Prague, Czech Republic	Plasmonic scattering studies of photo-chemically generated metallic nanoparticles on optical fiber double-tapers through evanescent field interference	The 36th Progress In Electromagnetics Research Symposium (PIERS 2015)	No	Yes	Yes (Acknowledged made during presentation)	No
C#11 May/2015/ Changchun, China	Plasmonics of random metallic nano-islands- nano-optical-trapping and optofluidics	The 8th International Conference on Nanophotonics (ICNP 2015)	No	Yes	Yes (Acknowledged made during presentation)	No
C#12 June/2015/ Wuhan	Plasmonic Absorption in Random Metallic Nano-islands: Sensing, Nano optical-trapping and Optofluidics	OSA Topical Meetings: Optoelectronic Devices and Integration, POEM 2015	No	Yes	Yes (Acknowledged made during presentation)	No
C#13 Feb/2014/ San Francisco, USA	Plasmonic nano-optical tweezers with in-situ sensing capability	Photonics West 2014	No	Yes	Yes (Acknowledged made during presentation)	No
C#14 June 2014/Changw on/Korea	Interferometric Phase Detection in Surface Plasmon Resonance Biosensors	International Conference on Computational & Experimental Engineering and Sciences (ICCES'14)	No	Yes	No	No

10. *Student(s) trained* (please attach a copy of the title page of the thesis)

]	Name	Degree registered for	e	Date of thesis submission/ graduation	
	Jiajie CHEN	PhD	1 August 2013	31 July 2016	

11. Other impact (e.g. award of patents or prizes, collaboration with other research institutions, technology transfer, etc.)

This project has enabled further collaboration with colleagues at Nanjing University (Prof. Guanghui Wang and Xuping Zhang, School of Modern Engineering and Applied Sciences) on the topic of optofluidics and trapping, and City University of Hong Kong (Dr Lawrence Wu, Department of Materials Science and Applied Physics) on the topic of SPR sensing. So far, the collaboration has generated 4 publications and one US patent.

- G.H. Wang, Z.F. Ying, H.P. Ho, Y. Huang, N.M. Zou, X.P. Zhang, Nano-optical conveyor belt with waveguide-coupled excitation, Optics Letters, 41(2016), 528-531. (DOI: 10.1364/OL.41.000528)
- H.F. Lu, Z.W. Kong, J.M. Lei, H.P. Ho, Tunable double resonance of silver nanodecahedron on the insulator/conductor film, Optics Express, 24(2016), 10611-19. (DOI: 10.1364/OE.24.010611)
- W.X. Jiao, G.H. Wang, Z.F. Ying, Y. Zou, H.P. Ho, T.Y. Sun, Y. Huang, X.P. Zhang, Switching of nanoparticles in large-scale hybrid electro-optofluidics integration, Optics Letters, 41(2016), 2652-2655. (DOI: 10.1364/OL.41.002652)
- 4. Z. Ying, G. Wang, X. Zhang, Y. Huang, H. P. Ho, Y. Zhang, Ultracompact TE-Pass Polarizer Based on a Hybrid Plasmonic Waveguide, IEEE Photonics Technology Letters, 27(2015), 201-204.
- 5. S.P. Ng, C.M.L. Wu, S.Y. Wu and H.P. Ho, Optical Sensing Apparatus and A Method for Detecting Characteristics of a Sample, US Patent No. 9,322,778 B2 (04/2016)

The PC has established a start-up company, ATSPIN Ltd, in January 2014 to commercialize lab-on-a-disc bio-detection devices developed through several projects undertaken by his team. Plasmonic absorption-induced heating effects developed through this project will be used as a localized heating source for laser-actuated manipulation of microfluidics and nucleic acid amplification through polymerase chain reaction (PCR).

Team members of this project (CH Choy, C. Surya, HP Ho) have presented project results in a series of local half-day workshops organized by the Hong Kong Optical Engineering Society in 2015 and 2016.

This project has further expanded the PC's international recognition within the photonics community. In 2015, the project PC, in honor of his contribution to the advancement of SPR biosensors, was elected as Fellow of SPIE.

This project has facilitated the publication of a book entitled "Handbook of Photonics for Biomedical Engineering", Springer (2017), co-edited by Aaron H.P. Ho, Donghyun Kim and Michael G. Somekh.

Project Coordinator

Contact Information:

Department of Electronic Engineering

The Chinese University of Hong

Tel: 3943 8279, Email: hpho@ee.cuhk.edu.hk